Intergenerational Transmission of Overweight and Obesity from Parents to Their Adolescent Offspring - The HUNT Study

Marit Næss, Turid Lingaas Holmen, Mette Langaas, Johan Håkon Bjørngaard, Kirsti Kvaløy, Marit Næss, Turid Lingaas Holmen, Mette Langaas, Johan Håkon Bjørngaard, Kirsti Kvaløy

Abstract

Purpose: The main aim of this study was to examine weight associations between parents and offspring at two time points: 1995-97 and 2006-08, taking into account body mass index (BMI) and waist circumference.

Methods: The study included 8425 parent-offspring trios who participated in the population based Health Study of Nord Trøndelag (the HUNT Study), Norway, at either the HUNT2 (1995-97) or the HUNT3 (2006-08) survey. We used linear mixed effects models with siblings clustered within mothers to analyze the associations between 1) parental grouped BMI and offspring BMI z-scores and 2) parental grouped waist circumference and offspring waist circumference z-scores.

Results: Adolescent and adult overweight and obesity were higher in 2006-08 than in 1995-97, with the greatest increase observed in waist circumference. Both mother's and father's BMI and waist circumference were strongly associated with corresponding measures in offspring. Compared with both parents being normal weight (BMI <25 kg/m2), having two overweight or obese parents (BMI ≥25 kg/m2) was associated with a higher offspring BMI z-score of 0.76 (95% CI; 0.65, 0.87) and 0.64 (95% CI; 0.48, 0.80) in daughters, and 0.76 (95% CI; 0.65, 0.87) and 0.69 (95% CI; 0.53, 0.80) in sons, in 1995-97 and 2006-08 respectively. Offspring with one parent being overweight/obese had BMI z-scores of approximately half of offspring with two parents categorized as overweight/obese. The results of the waist circumference based analyses did not differ substantially from the BMI based analyses.

Conclusions: Parental overweight was strongly positively associated with offspring weight both in 1995-97 and 2006-08 where both parents being overweight/obese gave the largest effect. This seemingly stable association, strongly address the importance of public health initiatives towards preventing obesity in parents of both sexes to decrease further obesity expansion in offspring.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Study flowchart.
Fig 1. Study flowchart.
Number of full parent-offspring trios organized into family groups (fam.grp) due to siblings. Abbreviations: BMI = Body mass index, WC = waist circumference
Fig 2. Associations in BMI.
Fig 2. Associations in BMI.
Associations between parental BMI-based overweight (BMI ≥25) and offspring`s BMI z- scores at two time points (1995–97 and 2006–08) with both parents being overweight, only mothers being overweight and only fathers being overweight, compared to both parents being normal weight (BMI

Fig 3. Associations in waist circumference.

Associations…

Fig 3. Associations in waist circumference.

Associations between parental waist circumference-based overweight (related to WHO`s…

Fig 3. Associations in waist circumference.
Associations between parental waist circumference-based overweight (related to WHO`s cut-off level) and offspring`s waist circumference z-scores at two time points (1995–97 and 2006–08), with both parents being overweight, only mothers being overweight and only fathers being overweight, compared to both parents being normal weight.
Fig 3. Associations in waist circumference.
Fig 3. Associations in waist circumference.
Associations between parental waist circumference-based overweight (related to WHO`s cut-off level) and offspring`s waist circumference z-scores at two time points (1995–97 and 2006–08), with both parents being overweight, only mothers being overweight and only fathers being overweight, compared to both parents being normal weight.

References

    1. Kohn M, Booth M. The worldwide epidemic of obesity in adolescents. Adolescent medicine. 2003;14(1):1–9.
    1. Livingstone MB. Childhood obesity in Europe: a growing concern. Public health nutrition. 2001;4(1a):109–16.
    1. Andersen LF, Lillegaard IT, Overby N, Lytle L, Klepp KI, Johansson L. Overweight and obesity among Norwegian schoolchildren: changes from 1993 to 2000. Scand J Public Health. 2005;33(2):99–106. 10.1080/140349404100410019172
    1. Miqueleiz E, Lostao L, Ortega P, Santos JM, Astasio P, Regidor E. Trends in the prevalence of childhood overweight and obesity according to socioeconomic status: Spain, 1987–2007. European journal of clinical nutrition. 2014;68(2):209–14. 10.1038/ejcn.2013.255
    1. Ahluwalia N, Dalmasso P, Rasmussen M, Lipsky L, Currie C, Haug E, et al. Trends in overweight prevalence among 11-, 13- and 15-year-olds in 25 countries in Europe, Canada and USA from 2002 to 2010. European journal of public health. 2015;25 Suppl 2:28–32.
    1. Chinn S, Rona RJ. Prevalence and trends in overweight and obesity in three cross sectional studies of British Children, 1974–94. Bmj. 2001;322(7277):24–6.
    1. World Health Organization W. Obesity: preventing and managing the global epidemic; report of a WHO consultation Geneva: World Health Organization; 2000. xii, 253 s. p.
    1. Midthjell K, Lee CM, Langhammer A, Krokstad S, Holmen TL, Hveem K, et al. Trends in overweight and obesity over 22 years in a large adult population: the HUNT Study, Norway. Clinical obesity. 2013;3(1–2):12–20. 10.1111/cob.12009
    1. Walls HL, Stevenson CE, Mannan HR, Abdullah A, Reid CM, McNeil JJ, et al. Comparing trends in BMI and waist circumference. Obesity (Silver Spring, Md). 2011;19(1):216–9.
    1. McCarthy HD, Ashwell M. A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message—'keep your waist circumference to less than half your height'. International journal of obesity. 2006;30(6):988–92. 10.1038/sj.ijo.0803226
    1. Xi B, Mi J, Zhao M, Zhang T, Jia C, Li J, et al. Trends in abdominal obesity among U.S. children and adolescents. Pediatrics. 2014;134(2):e334–9. 10.1542/peds.2014-0970
    1. Bahk J, Khang YH. Trends in childhood obesity and central adiposity between 1998–2001 and 2010–2012 according to household income and urbanity in Korea. BMC public health. 2016;16(1):18.
    1. Silventoinen K, Kaprio J. Genetics of tracking of body mass index from birth to late middle age: evidence from twin and family studies. Obesity facts. 2009;2(3):196–202. 10.1159/000219675
    1. O'Rahilly S, Farooqi IS. Genetics of obesity. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006;361(1471):1095–105.
    1. Jaaskelainen A, Pussinen J, Nuutinen O, Schwab U, Pirkola J, Kolehmainen M, et al. Intergenerational transmission of overweight among Finnish adolescents and their parents: a 16-year follow-up study. International journal of obesity. 2011;35(10):1289–94. 10.1038/ijo.2011.150
    1. Ajala O, Fr Meaux AE, Hosking J, Metcalf BS, Jeffery AN, Voss LD, et al. The relationship of height and body fat to gender-assortative weight gain in children. A longitudinal cohort study (EarlyBird 44). International journal of pediatric obesity: IJPO: an official journal of the International Association for the Study of Obesity. 2011;6(3–4):223–8.
    1. Ajslev TA, Angquist L, Silventoinen K, Baker JL, Sorensen TI. Stable intergenerational associations of childhood overweight during the development of the obesity epidemic. Obesity (Silver Spring, Md). 2015;23(6):1279–87.
    1. Bjelland M, Lien N, Bergh IH, Grydeland M, Anderssen SA, Klepp KI, et al. Overweight and waist circumference among Norwegian 11-year-olds and associations with reported parental overweight and waist circumference: The HEIA study. Scand J Public Health. 2010;38(5 Suppl):19–27. 10.1177/1403494810385036
    1. Mostazir M, Jeffery A, Voss L, Wilkin T. Gender-assortative waist circumference in mother-daughter and father-son pairs, and its implications. An 11-year longitudinal study in children (EarlyBird 59). Pediatric obesity. 2014;9(3):176–85. 10.1111/j.2047-6310.2013.00157.x
    1. Whitaker KL, Jarvis MJ, Beeken RJ, Boniface D, Wardle J. Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. The American journal of clinical nutrition. 2010;91(6):1560–7. 10.3945/ajcn.2009.28838
    1. Wardle J, Boniface D. Changes in the distributions of body mass index and waist circumference in English adults, 1993/1994 to 2002/2003. International journal of obesity. 2008;32(3):527–32. 10.1038/sj.ijo.0803740
    1. Davey Smith G, Steer C, Leary S, Ness A. Is there an intrauterine influence on obesity? Evidence from parent child associations in the Avon Longitudinal Study of Parents and Children (ALSPAC). Archives of disease in childhood. 2007;92(10):876–80. 10.1136/adc.2006.104869
    1. Krokstad S, Langhammer A, Hveem K, Holmen TL, Midthjell K, Stene TR, et al. Cohort Profile: the HUNT Study, Norway. International journal of epidemiology. 2013;42(4):968–77. 10.1093/ije/dys095
    1. Holmen TL, Bratberg G, Krokstad S, Langhammer A, Hveem K, Midthjell K, et al. Cohort profile of the Young-HUNT Study, Norway: A population-based study of adolescents. International journal of epidemiology. 2013.
    1. Holmen J, Midthjell K, Krüger Ø, Langhammer A, Holmen TL, Bratberg GH, et al. The Nord-Trøndelag Health Study 1995–97 (HUNT 2): objectives, contents, methods and participation. Norsk epidemiologi. 2003;13(1):19–32.
    1. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. Bmj. 2000;320(7244):1240–3.
    1. Bjornelv S, Lydersen S, Mykletun A, Holmen TL. Changes in BMI-distribution from 1966–69 to 1995–97 in adolescents. The Young-HUNT study, Norway. BMC public health. 2007;7:279 10.1186/1471-2458-7-279
    1. Brannsether B, Roelants M, Bjerknes R, Júlíusson PB. Waist circumference and waist-to-height ratio in Norwegian children 4–18 years of age: Reference values and cut-off levels. Acta Paediatrica. 2011;100(12):1576–82. 10.1111/j.1651-2227.2011.02370.x
    1. Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence.17(2):117–33. 10.1007/BF01537962
    1. SSB. Norwegian standard classification of education (Norsk standard for utdanningsgruppering) Rev. 2000 th ed. Oslo: Statistics Norway (SSB); 2003.
    1. Rangul V, Holmen TL, Bauman A, Bratberg GH, Kurtze N, Midthjell K. Factors predicting changes in physical activity through adolescence: the Young-HUNT Study, Norway. The Journal of adolescent health: official publication of the Society for Adolescent Medicine. 2011;48(6):616–24.
    1. Lake JK, Power C, Cole TJ. Child to adult body mass index in the 1958 British birth cohort: associations with parental obesity. Archives of disease in childhood. 1997;77(5):376–81.
    1. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. The New England journal of medicine. 1997;337(13):869–73. 10.1056/NEJM199709253371301
    1. Perez-Pastor EM, Metcalf BS, Hosking J, Jeffery AN, Voss LD, Wilkin TJ. Assortative weight gain in mother-daughter and father-son pairs: an emerging source of childhood obesity. Longitudinal study of trios (EarlyBird 43). International journal of obesity. 2009;33(7):727–35. 10.1038/ijo.2009.76
    1. Chau JY, Grunseit A, Midthjell K, Holmen J, Holmen TL, Bauman AE, et al. Cross-sectional associations of total sitting and leisure screen time with cardiometabolic risk in adults. Results from the HUNT Study, Norway. J Sci Med Sport. 2014;17(1):78–84. 10.1016/j.jsams.2013.03.004
    1. Silventoinen K, Rokholm B, Kaprio J, Sorensen TI. The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. International journal of obesity. 2010;34(1):29–40. 10.1038/ijo.2009.177

Source: PubMed

3
Subscribe