Risk factors for and prediction of mortality in critically ill medical-surgical patients receiving heparin thromboprophylaxis

Guowei Li, Lehana Thabane, Deborah J Cook, Renato D Lopes, John C Marshall, Gordon Guyatt, Anne Holbrook, Noori Akhtar-Danesh, Robert A Fowler, Neill K J Adhikari, Rob Taylor, Yaseen M Arabi, Dean Chittock, Peter Dodek, Andreas P Freitag, Stephen D Walter, Diane Heels-Ansdell, Mitchell A H Levine, Guowei Li, Lehana Thabane, Deborah J Cook, Renato D Lopes, John C Marshall, Gordon Guyatt, Anne Holbrook, Noori Akhtar-Danesh, Robert A Fowler, Neill K J Adhikari, Rob Taylor, Yaseen M Arabi, Dean Chittock, Peter Dodek, Andreas P Freitag, Stephen D Walter, Diane Heels-Ansdell, Mitchell A H Levine

Abstract

Background: Previous studies have suggested that prediction models for mortality should be adjusted for additional risk factors beyond the Acute Physiology and Chronic Health Evaluation (APACHE) score. Our objective was to identify risk factors independent of APACHE II score and construct a prediction model to improve the predictive accuracy for hospital and intensive care unit (ICU) mortality.

Methods: We used data from a multicenter randomized controlled trial (PROTECT, Prophylaxis for Thromboembolism in Critical Care Trial) to build a new prediction model for hospital and ICU mortality. Our primary outcome was all-cause 60-day hospital mortality, and the secondary outcome was all-cause 60-day ICU mortality.

Results: We included 3746 critically ill non-trauma medical-surgical patients receiving heparin thromboprophylaxis (43.3 % females) in this study. The new model predicting 60-day hospital mortality incorporated APACHE II score (main effect: hazard ratio (HR) = 0.97 for per-point increase), body mass index (BMI) (main effect: HR = 0.92 for per-point increase), medical admission versus surgical (HR = 1.67), use of inotropes or vasopressors (HR = 1.34), acetylsalicylic acid or clopidogrel (HR = 1.27) and the interaction term between APACHE II score and BMI (HR = 1.002 for per-point increase). This model had a good fit to the data and was well calibrated and internally validated. However, the discriminative ability of the prediction model was unsatisfactory (C index < 0.65). Sensitivity analyses supported the robustness of these findings. Similar results were observed in the new prediction model for 60-day ICU mortality which included APACHE II score, BMI, medical admission and invasive mechanical ventilation.

Conclusion: Compared with the APACHE II score alone, the new prediction model increases data collection, is more complex but does not substantially improve discriminative ability.

Trial registration: ClinicalTrials.gov Identifier: NCT00182143.

Keywords: APACHE; Critical care; Intensive care unit; Mortality; Prediction model.

Figures

Fig. 1
Fig. 1
Kaplan–Meier survival curves for 60-day hospital mortality in derivation and validation sets
Fig. 2
Fig. 2
Observed versus expected in derivation set for 60-day hospital mortality: a results from Model 1; b results from Model 3 (solid diagonal line represents ideal calibration)
Fig. 3
Fig. 3
Observed versus expected in validation set for 60-day hospital mortality: a results from Model 1; b results from Model 3 (solid diagonal line represents ideal calibration)
Fig. 4
Fig. 4
Observed versus expected in the whole dataset for 60-day ICU mortality: a results from Model 1; b results from Model 3 (solid diagonal line represents ideal calibration)

References

    1. Checkley W, Martin GS, Brown SM, Chang SY, Dabbagh O, Fremont RD, Girard TD, Rice TW, Howell MD, Johnson SB, et al. Structure, process, and annual ICU mortality across 69 centers: United States Critical Illness and Injury Trials Group Critical Illness Outcomes Study. Crit Care Med. 2014;42(2):344–56.
    1. Wu AW, Pronovost P, Morlock L. ICU incident reporting systems. J Crit Care. 2002;17(2):86–94. doi: 10.1053/jcrc.2002.35100.
    1. Parker J. California Intensive Care Outcomes Project (CALICO). (2007). Accessed 20 Feb 2015.
    1. Bouch DC, Thompson JP. Severity scoring systems in the critically ill. Contin Educ Anaesth Critical Care Pain. 2008;8(5):181–185. doi: 10.1093/bjaceaccp/mkn033.
    1. Gartman EJ, Casserly BP, Martin D, Ward NS. Using serial severity scores to predict death in ICU patients: a validation study and review of the literature. Curr Opin Crit Care. 2009;15(6):578–582. doi: 10.1097/MCC.0b013e328332f50c.
    1. Brinkman S, Bakhshi-Raiez F, Abu-Hanna A, de Jonge E, Bosman RJ, Peelen L, de Keizer NF. External validation of Acute Physiology and Chronic Health Evaluation IV in Dutch intensive care units and comparison with Acute Physiology and Chronic Health Evaluation II and Simplified Acute Physiology Score II. J Crit Care. 2011;26(1):105.e11–105.e18. doi: 10.1016/j.jcrc.2010.07.007.
    1. Zimmerman JE, Kramer AA. Outcome prediction in critical care: the Acute Physiology and Chronic Health Evaluation models. Curr Opin Crit Care. 2008;14(5):491–497. doi: 10.1097/MCC.0b013e32830864c0.
    1. Beck DH, Smith GB, Pappachan JV, Millar B. External validation of the SAPS II, APACHE II and APACHE III prognostic models in South England: a multicentre study. Intensive Care Med. 2003;29(2):249–256.
    1. Wong DT, Knaus WA. Predicting outcome in critical care: the current status of the APACHE prognostic scoring system. Can J Anaesth. 1991;38(3):374–383. doi: 10.1007/BF03007629.
    1. Oh TE, Hutchinson R, Short S. BUCKLEY T, LIN E, LEUNG D: Verification of the acute physiology and chronic health evaluation scoring system in a Hong Kong intensive care unit. Crit Care Med. 1993;21(5):698–705. doi: 10.1097/00003246-199305000-00013.
    1. Capuzzo M, Valpondi V, Sgarbi A, Bortolazzi S, Pavoni V, Gilli G, Candini G, Gritti G, Alvisi R. Validation of severity scoring systems SAPS II and APACHE II in a single-center population. Intensive Care Med. 2000;26(12):1779–1785. doi: 10.1007/s001340000715.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE, Birnbaum ML, Cullen DJ, Kohles MK, Shin B, Snyder JV. Evaluating outcome from intensive care: a preliminary multihospital comparison. Crit Care Med. 1982;10(8):491–496. doi: 10.1097/00003246-198208000-00001.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. doi: 10.1097/00003246-198510000-00009.
    1. Knaus WA, Wagner D, Draper E, Zimmerman J, Bergner M, Bastos PG, Sirio C, Murphy D, Lotring T, Damiano A. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest. 1991;100(6):1619–1636. doi: 10.1378/chest.100.6.1619.
    1. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients*. Crit Care Med. 2006;34(5):1297–1310. doi: 10.1097/01.CCM.0000215112.84523.F0.
    1. Arabi Y, Al Shirawi N, Memish Z, Venkatesh S, Al-Shimemeri A. Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: a prospective cohort study. Crit Care. 2003;7(5):R116. doi: 10.1186/cc2373.
    1. Keegan MT, Gali B, Findlay JY, Heimbach JK, Plevak DJ, Afessa B. APACHE III outcome prediction in patients admitted to the intensive care unit after liver transplantation: a retrospective cohort study. BMC Surg. 2009;9:11. doi: 10.1186/1471-2482-9-11.
    1. Namendys-Silva SA, Baltazar-Torres JA, Rivero-Sigarroa E, Fonseca-Lazcano JA, Montiel-Lopez L, Dominguez-Cherit G. Prognostic factors in patients with systemic lupus erythematosus admitted to the intensive care unit. Lupus. 2009;18(14):1252–1258. doi: 10.1177/0961203309345720.
    1. Papachristou GI, Muddana V, Yadav D, O’Connell M, Sanders MK, Slivka A, Whitcomb DC. Comparison of BISAP, Ranson’s, APACHE-II, and CTSI scores in predicting organ failure, complications, and mortality in acute pancreatitis. Am J Gastroenterol. 2010;105(2):435–441. doi: 10.1038/ajg.2009.622.
    1. Inal MT, Memis D, Kargi M, Sut N. Prognostic value of indocyanine green elimination assessed with LiMON in septic patients. J Crit Care. 2009;24(3):329–334. doi: 10.1016/j.jcrc.2008.11.012.
    1. Siontis G, Tzoulaki I, Ioannidis J. Predicting death: an empirical evaluation of predictive tools for mortality. Arch Intern Med. 2011;171(19):1721–1726. doi: 10.1001/archinternmed.2011.334.
    1. Lagu T, Rothberg MB, Nathanson BH, Steingrub JS, Lindenauer PK. Incorporating initial treatments improves performance of a mortality prediction model for patients with sepsis. Pharmacoepidemiol Drug Saf. 2012;21(S2):44–52. doi: 10.1002/pds.3229.
    1. O’Brien JM, Jr, Phillips GS, Ali NA, Lucarelli M, Marsh CB, Lemeshow S. Body mass index is independently associated with hospital mortality in mechanically ventilated adults with acute lung injury. Crit Care Med. 2006;34(3):738.
    1. Pickkers P, de Keizer N, Dusseljee J, Weerheijm D, van der Hoeven JG, Peek N. Body mass index is associated with hospital mortality in critically ill patients: an observational cohort study. Crit Care Med. 2013;41(8):1878–1883. doi: 10.1097/CCM.0b013e31828a2aa1.
    1. Mahmood K, Eldeirawi K, Wahidi MM. Association of gender with outcomes in critically ill patients. Crit Care. 2012;16(3):R92. doi: 10.1186/CC11355.
    1. Combes A, Luyt CE, Trouillet JL, Nieszkowska A, Chastre J. Gender impact on the outcomes of critically ill patients with nosocomial infections. Crit Care Med. 2009;37(9):2506–2511. doi: 10.1097/CCM.0b013e3181a569df.
    1. Nachtigall I, Tafelski S, Rothbart A, Kaufner L, Schmidt M, Tamarkin A, Kartachov M, Zebedies D, Trefzer T, Wernecke KD, et al. Gender-related outcome difference is related to course of sepsis on mixed ICUs: a prospective, observational clinical study. Crit Care. 2011;15(3):R151. doi: 10.1186/cc10277.
    1. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall JR. SAPS 3–From evaluation of the patient to evaluation of the intensive care unit. Part 2: development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–1355. doi: 10.1007/s00134-005-2763-5.
    1. Walsh TS, Stanworth SJ, Prescott RJ, Lee RJ, Watson DM, Wyncoll D. Prevalence, management, and outcomes of critically ill patients with prothrombin time prolongation in United Kingdom intensive care units. Crit Care Med. 2010;38(10):1939–1946.
    1. Angstwurm MW, Dempfle CE, Spannagl M. New disseminated intravascular coagulation score: a useful tool to predict mortality in comparison with Acute Physiology and Chronic Health Evaluation II and Logistic Organ Dysfunction scores. Crit Care Med. 2006;34(2):314–320. doi: 10.1097/01.CCM.0000196832.27501.B2.
    1. Williamson DR, Albert M, Heels-Ansdell D, Arnold DM, Lauzier F, Zarychanski R, Crowther M, Warkentin TE, Dodek P, Cade J, et al. Thrombocytopenia in critically ill patients receiving thromboprophylaxis: frequency, risk factors, and outcomes. Chest. 2013;144(4):1207–1215. doi: 10.1378/chest.13-0121.
    1. Strauss R, Wehler M, Mehler K, Kreutzer D, Koebnick C, Hahn EG. Thrombocytopenia in patients in the medical intensive care unit: bleeding prevalence, transfusion requirements, and outcome. Crit Care Med. 2002;30(8):1765–1771. doi: 10.1097/00003246-200208000-00015.
    1. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. doi: 10.1136/bmj.g7594.
    1. Cook D, Meade M, Guyatt G, Walter SD, Heels-Ansdell D, Geerts W, Warkentin TE, Cooper DJ, Zytaruk N, Vallance S. PROphylaxis for ThromboEmbolism in Critical Care Trial protocol and analysis plan. J Crit Care. 2011;26(2):e221–e223. doi: 10.1016/j.jcrc.2011.02.010.
    1. Cook D, Meade M, Guyatt G, Walter S, Heels-Ansdell D, Warkentin TE, Zytaruk N, Crowther M, Geerts W, Cooper DJ, et al. Dalteparin versus unfractionated heparin in critically ill patients. New Engl J Med. 2011;364(14):1305–1314. doi: 10.1056/NEJMoa1014475.
    1. Horton NJ, Kleinman KP. Much ado about nothing: a comparison of missing data methods and software to fit incomplete data regression models. Am Stat. 2007;61(1):79–90. doi: 10.1198/000313007X172556.
    1. Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009;338:b604. doi:10.1136/bmj.b604.
    1. Miles J, Shevlin M. Appling regression and correlation: a guide for students. London: Sage; 2001.
    1. Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika. 1994;81(3):515–526. doi: 10.1093/biomet/81.3.515.
    1. Goldhill DR, Sumner A. Outcome of intensive care patients in a group of British intensive care units. Crit Care Med. 1998;26(8):1337–1345. doi: 10.1097/00003246-199808000-00017.
    1. Nijman RG, Vergouwe Y, Thompson M, van Veen M, van Meurs AH, van der Lei J, Steyerberg EW, Moll HA, Oostenbrink R: Clinical prediction model to aid emergency doctors managing febrile children at risk of serious bacterial infections: diagnostic study. BMJ. 2013;346:f1706.
    1. Gronnesby JK, Borgan O. A method for checking regression models in survival analysis based on the risk score. Lifetime Data Anal. 1996;2(4):315–328. doi: 10.1007/BF00127305.
    1. Akaike H. A new look at the statistical model identification. Autom Control IEEE Trans . 1974;19(6):716–723. doi: 10.1109/TAC.1974.1100705.
    1. Harrell F, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4.
    1. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009;338:b605.
    1. Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. 2013;13(1):33. doi: 10.1186/1471-2288-13-33.
    1. Pickkers P, de Keizer N, Dusseljee J, Weerheijm D, van der Hoeven JG, Peek N. Body mass index is associated with hospital mortality in critically ill patients: an observational cohort study. Crit Care Med. 2013;41(8):1878–1883. doi: 10.1097/CCM.0b013e31828a2aa1.
    1. Hogue CW, Jr, Stearns JD, Colantuoni E, Robinson KA, Stierer T, Mitter N, Pronovost PJ, Needham DM. The impact of obesity on outcomes after critical illness: a meta-analysis. Intensive Care Med. 2009;35(7):1152–1170. doi: 10.1007/s00134-009-1424-5.
    1. Hutagalung R, Marques J, Kobylka K, Zeidan M, Kabisch B, Brunkhorst F, Reinhart K, Sakr Y. The obesity paradox in surgical intensive care unit patients. Intensive Care Med. 2011;37(11):1793–1799. doi: 10.1007/s00134-011-2321-2.
    1. Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol. 2004;43(8):1439–1444. doi: 10.1016/j.jacc.2003.11.039.
    1. Niedziela J, Hudzik B, Niedziela N, Gasior M, Gierlotka M, Wasilewski J, Myrda K, Lekston A, Polonski L, Rozentryt P. The obesity paradox in acute coronary syndrome: a meta-analysis. Eur J Epidemiol. 2014;29(11):801–812. doi: 10.1007/s10654-014-9961-9.
    1. Lasocki S. The true obesity paradox: obese and malnourished? Crit Care Med. 2015;43(1):240–241. doi: 10.1097/CCM.0000000000000646.
    1. Oliveros H, Villamor E. Obesity and mortality in critically ill adults: a systematic review and meta-analysis. Obesity. 2008;16(3):515–521. doi: 10.1038/oby.2007.102.
    1. Molina R, Bernal T, Borges M, Zaragoza R, Bonastre J, Granada RM, Rodriguez-Borregán JC, Núñez K, Seijas I, Ayestaran I. Ventilatory support in critically ill hematology patients with respiratory failure. Crit Care. 2012;16(4):R133. doi: 10.1186/cc11438.
    1. van Gestel J, Bierings M, Dauger S, Dalle J, Pavlíček P, Sedláček P, Monteiro L, Lankester A, Bollen C. Outcome of invasive mechanical ventilation after pediatric allogeneic hematopoietic SCT: results from a prospective, multicenter registry. Bone Marrow Transplant. 2014;49(10):1287–1292. doi: 10.1038/bmt.2014.147.
    1. Adams ST, Leveson SH: Clinical prediction rules. BMJ. 2012;344:d8312.
    1. Balekian AA, Gould MK. Predicting in-hospital mortality among critically ill patients with end-stage liver disease. J Crit Care. 2012;27(6):e741–e747. doi: 10.1016/j.jcrc.2012.08.017.
    1. Rello J, Rodriguez A, Lisboa T, Gallego M, Lujan M, Wunderink R. PIRO score for community-acquired pneumonia: a new prediction rule for assessment of severity in intensive care unit patients with community-acquired pneumonia*. Crit Care Med. 2009;37(2):456–462. doi: 10.1097/CCM.0b013e318194b021.

Source: PubMed

3
Subscribe