Lactoferrin for the treatment of COVID-19 (Review)

Yidan Wang, Puxiu Wang, Haoran Wang, Yifan Luo, Long Wan, Mingyan Jiang, Yang Chu, Yidan Wang, Puxiu Wang, Haoran Wang, Yifan Luo, Long Wan, Mingyan Jiang, Yang Chu

Abstract

The coronavirus disease 2019 (COVID-19) outbreak was caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical outcomes of elderly individuals and those with underlying diseases affected by COVID-19 are serious, and may result in acute respiratory distress syndrome (ARDS) and even mortality. Currently, the clinical treatments for COVID-19 mostly involve symptom alleviation measures and non-specific broad spectrum antiviral drugs, as highly effective antiviral drugs and vaccines are not yet available. Lactoferrin (LF) is a safe iron-binding glycoprotein that is present in the milk of the majority of mammals and exhibits broad-spectrum antiviral activity, including against coronaviruses. In addition, LF also exhibits anti-inflammatory, anti-infective and immune-regulating properties, which are in line with the treatment requirements for SARS-CoV-2 infection. Therefore, the use of LF may be of value in the prevention and/or management of COVID-19. The aim of the present review was to summarize the previous reports on the antiviral properties of LF and compare these with the characteristics of SARS-CoV-2 infection, in order to determine whether LF could be used to assist in the prevention of COVID-19 and to investigate the possible underlying mechanisms governing its mode of action.

Keywords: coronavirus disease 2019; immunomodulatory effects; lactoferrin; receptors of host cells; severe acute respiratory syndrome coronavirus 2.

Copyright: © Wang et al.

Figures

Figure 1
Figure 1
The SARS-CoV-2 infection. SARS-CoV-2 is composed of Spike, Nucleocapsid, Membrane, Envelope, and ssRNA. It binds to the ACE2 receptor on the surface of the host cell and enters the host cell. After a series of processes such as RNA replication and translation, it increases in value to obtain new virus. Infected individuals usually present with symptoms including a fever and headache. ssRNA, single-stranded RNA; ACE2, angiotensin-converting enzyme 2.
Figure 2
Figure 2
Interactions between SARS-CoV-2-RBD and ACE2. Yellow, the RBD of SARS-CoV-2; blue, the PD of ACE2. The red dotted line indicates the polar interaction. (A) The interaction between RBD and ACE2 is mainly through α1 helix, α2 helix, β3 and β4. (B-D) The specific details of the interface. Reproduced with permission (52). NAG, N-acetylglucosamine; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; RBD, receptor-binding domain; ACE2, angiotensin-converting enzyme 2.

References

    1. World Health Organization (WHO): WHO Coronavirus Disease (COVID-19) Dashboard. WHO, Geneva, 2020. October 7, 2020.
    1. Giustino V, Parroco AM, Gennaro A, Musumeci G, Palma A, Battaglia G. Physical activity levels and related energy expenditure during COVID-19 quarantine among the Sicilian active population: A Cross-Sectional Online Survey Study. Sustainability. 2020;12(4356)
    1. Paoli A, Musumeci G. Elite Athletes and COVID-19 lockdown: Future health concerns for an entire sector. J Funct Morphol Kinesiol. 2020;5(30)
    1. Maugeri G, Castrogiovanni P, Battaglia G, Pippi R, D'Agata V, Palma A, Di Rosa M, Musumeci G. The impact of physical activity on psychological health during Covid-19 pandemic in Italy. Heliyon. 2020;6(e04315)
    1. Ravalli S, Musumeci G. Coronavirus Outbreak in Italy: Physiological benefits of home-based exercise during pandemic. J Funct Morphol Kinesiol. 2020;5(31)
    1. Zhai P, Ding Y, Wu X, Long J, Zhong Y, Li Y. The epidemiology, diagnosis and treatment of COVID-19. Int J Antimicrob Agents. 2020;55(105955) doi: 10.1016/j.ijantimicag.2020.105955.
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA, Tsatsakis A. Obesity-a risk factor for increased COVID-19 prevalence, severity and lethality. Mol Med Rep. 2020;22:9–19. doi: 10.3892/mmr.2020.11127.
    1. Goumenou M, Sarigiannis D, Tsatsakis A, Anesti O, Docea AO, Petrakis D, Tsoukalas D, Kostoff R, Rakitskii V, Spandidos DA, et al. COVID-19 in Northern Italy: An integrative overview of factors possibly influencing the sharp increase of the outbreak (Review) Mol Med Rep. 2020;22:20–32. doi: 10.3892/mmr.2020.11079.
    1. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(105924) doi: 10.1016/j.ijantimicag.2020.105924.
    1. Nitulescu GM, Paunescu H, Moschos SA, Petrakis D, Nitulescu G, Ion GND, Spandidos DA, Nikolouzakis TK, Drakoulis N, Tsatsakis A. Comprehensive analysis of drugs to treat SARS-CoV-2 infection: Mechanistic insights into current COVID-19 therapies (Review) Int J Mol Med. 2020;46:467–488. doi: 10.3892/ijmm.2020.4608.
    1. Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother. 2020;64:e00483–20. doi: 10.1128/AAC.00483-20.
    1. Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: Is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020;5:335–337. doi: 10.1016/S2468-1253(20)30048-0.
    1. Dehelean CA, Lazureanu V, Coricovac D, Mioc M, Oancea R, Marcovici I, Pinzaru I, Soica C, Tsatsakis AM, Cretu O. SARS-CoV-2: Repurposed drugs and novel therapeutic approaches-insights into chemical structure-biological activity and toxicological screening. J Clin Med. 2020;9(2084) doi: 10.3390/jcm9072084.
    1. Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F, Vinceti M, et al. Towards effective COVID-19 vaccines: Updates, perspectives and challenges (Review) Int J Mol Med. 2020;46:3–16. doi: 10.3892/ijmm.2020.4596.
    1. Ren J, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmacol Res. 2020;155(104743) doi: 10.1016/j.phrs.2020.104743.
    1. Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S, Chufang L, Jin Z, Zhenhua J, Haiming J, et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) Pharmacol Res. 2020;156(104761) doi: 10.1016/j.phrs.2020.104761.
    1. Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr. 2019;59:580–596. doi: 10.1080/10408398.2017.1381583.
    1. Baveye S, Elass E, Mazurier J, Spik G, Legrand D. Lactoferrin: A multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin Chem Lab Med. 1999;37:281–286. doi: 10.1515/CCLM.1999.049.
    1. Lönnerdal B, Iyer S. Lactoferrin: Molecular structure and biological function. Annu Rev Nutr. 1995;15:93–110. doi: 10.1146/annurev.nu.15.070195.000521.
    1. Redwan EM, Uversky VN, El-Fakharany EM, Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. C R Biol. 2014;337:581–595. doi: 10.1016/j.crvi.2014.08.003.
    1. Khan JA, Kumar P, Paramasivam M, Yadav RS, Sahani MS, Sharma S, Srinivasan A, Singh TP. Camel lactoferrin, a transferrin-cum-lactoferrin: Crystal structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role. J Mol Biol. 2001;309:751–761. doi: 10.1006/jmbi.2001.4692.
    1. González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin: Structure, function and applications. Int J Antimicrob Agents. 2009;33:301.e1–e8. doi: 10.1016/j.ijantimicag.2008.07.020.
    1. Moreno-Expósito L, Illescas-Montes R, Melguizo-Rodríguez L, Ruiz C, Ramos-Torrecillas J, de Luna-Bertos E. Multifunctional capacity and therapeutic potential of lactoferrin. Life Sci. 2018;195:61–64. doi: 10.1016/j.lfs.2018.01.002.
    1. Hao L, Shan Q, Wei J, Ma F, Sun P. Lactoferrin: Major physiological functions and applications. Curr Protein Pept Sci. 2019;20:139–144. doi: 10.2174/1389203719666180514150921.
    1. Elass-Rochard E, Legrand D, Salmon V, Roseanu A, Trif M, Tobias PS, Mazurier J, Spik G. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun. 1998;66:486–491. doi: 10.1128/IAI.66.2.486-491.1998.
    1. Lu L, Hangoc G, Oliff A, Chen LT, Shen RN, Broxmeyer HE. Protective influence of lactoferrin on mice infected with the polycythemia-inducing strain of friend virus complex. Cancer Res. 1987;47:4184–4188.
    1. Oda H, Wakabayashi H, Tanaka M, Yamauchi K, Sugita C, Yoshida H, Abe F, Sonoda T and Kurokawa M: Effects of lactoferrin on infectious diseases in Japanese summer: A randomized, double-blinded, placebo-controlled trial. J Microbiol Immunol Infect, Feb 26, 2020 (Online ahead of print).
    1. Sano H, Nagai K, Tsutsumi H, Kuroki Y. Lactoferrin and surfactant protein A exhibit distinct binding specificity to F protein and differently modulate respiratory syncytial virus infection. Eur J Immunol. 2003;33:2894–2902. doi: 10.1002/eji.200324218.
    1. Pietrantoni A, Di Biase AM, Tinari A, Marchetti M, Valenti P, Seganti L, Superti F. Bovine lactoferrin inhibits adenovirus infection by interacting with viral structural polypeptides. Antimicrob Agents Chemother. 2003;47:2688–2691. doi: 10.1128/aac.47.8.2688-2691.2003.
    1. Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, Jiang C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One. 2011;6(e23710) doi: 10.1371/journal.pone.0023710.
    1. Chen JM, Fan YC, Lin JW, Chen YY, Hsu WL, Chiou SS. Bovine lactoferrin inhibits dengue virus infectivity by interacting with heparan sulfate, low-density lipoprotein receptor, and DC-SIGN. Int J Mol Sci. 2017;18(1957) doi: 10.3390/ijms18091957.
    1. Weng TY, Chen LC, Shyu HW, Chen SH, Wang JR, Yu CK, Lei HY, Yeh TM. Lactoferrin inhibits enterovirus 71 infection by binding to VP1 protein and host cells. Antiviral Res. 2005;67:31–37. doi: 10.1016/j.antiviral.2005.03.005.
    1. Pietrantoni A, Fortuna C, Remoli ME, Ciufolini ME, Superti F. Bovine lactoferrin inhibits Toscana virus infection by binding to heparan sulphate. Viruses. 2015;7:480–495. doi: 10.3390/v7020480.
    1. Beljaars L, van der Strate BW, Bakker HI, Reker-Smit C, van Loenen-Weemaes AM, Wiegmans FC, Harmsen MC, Molema G, Meijer DK. Inhibition of cytomegalovirus infection by lactoferrin in vitro and in vivo. Antiviral Res. 2004;63:197–208. doi: 10.1016/j.antiviral.2004.05.002.
    1. Ammendolia MG, Marchetti M, Superti F. Bovine lactoferrin prevents the entry and intercellular spread of herpes simplex virus type 1 in green Monkey kidney cells. Antiviral Res. 2007;76:252–262. doi: 10.1016/j.antiviral.2007.07.005.
    1. Ishikawa H, Awano N, Fukui T, Sasaki H, Kyuwa S. The protective effects of lactoferrin against murine norovirus infection through inhibition of both viral attachment and replication. Biochem Biophys Res Commun. 2013;434:791–796. doi: 10.1016/j.bbrc.2013.04.013.
    1. Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, et al. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020;725(138277) doi: 10.1016/j.scitotenv.2020.138277.
    1. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581:215–220. doi: 10.1038/s41586-020-2180-5.
    1. van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res. 2001;52:225–239. doi: 10.1016/s0166-3542(01)00195-4.
    1. Baker EN, Baker HM. Molecular structure, binding properties and dynamics of lactoferrin. Cell Mol Life Sci. 2005;62:2531–2539. doi: 10.1007/s00018-005-5368-9.
    1. Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease. Biol Rev Camb Philos Soc. 2013;88:928–943. doi: 10.1111/brv.12034.
    1. Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan sulfate proteoglycans and viral attachment: True receptors or adaptation bias? Viruses. 2019;11(596) doi: 10.3390/v11070596.
    1. Bernard KA, Klimstra WB, Johnston RE. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology. 2000;276:93–103. doi: 10.1006/viro.2000.0546.
    1. Goodfellow IG, Sioofy AB, Powell RM, Evans DJ. Echoviruses bind heparan sulfate at the cell surface. J Virol. 2001;75:4918–4921. doi: 10.1128/JVI.75.10.4918-4921.2001.
    1. Li P, Sheng J, Liu Y, Li J, Liu J, Wang F. Heparosan-derived heparan sulfate/heparin-like compounds: One kind of potential therapeutic agents. Med Res Rev. 2013;33:665–692. doi: 10.1002/med.21263.
    1. Zheng J. SARS-CoV-2: An emerging coronavirus that causes a global threat. Int J Biol Sci. 2020;16:1678–1685. doi: 10.7150/ijbs.45053.
    1. Bartlam M, Yang H, Rao Z. Structural insights into SARS coronavirus proteins. Curr Opin Struct Biol. 2005;15:664–672. doi: 10.1016/j.sbi.2005.10.004.
    1. Belting M. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem Sci. 2003;28:145–151. doi: 10.1016/S0968-0004(03)00031-8.
    1. Carvalho CAM, Sousa IP Jr, Silva JL, Oliveira AC, Gonçalves RB, Gomes AMO. Inhibition of Mayaro virus infection by bovine lactoferrin. Virology. 2014;452-453:297–302. doi: 10.1016/j.virol.2014.01.022.
    1. Jenssen H, Hancock RE. Antimicrobial properties of lactoferrin. Biochimie. 2009;91:19–29. doi: 10.1016/j.biochi.2008.05.015.
    1. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–1448. doi: 10.1126/science.abb2762.
    1. Gao C, Zeng J, Jia N, Stavenhagen K, Matsumoto Y, Zhang H, Li J, Hume AJ, Mühlberger E, van Die I, et al: SARS-CoV-2 spike protein interacts with multiple innate immune receptors. bioRxiv: 2020.07.29.227462, 2020.
    1. Brufsky A and Lotze MT: DC/L-SIGNs of hope in the COVID-19 pandemic. J Med Virol, May 6, 2020 (Online ahead of print).
    1. Han DP, Lohani M, Cho MW. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J Virol. 2007;81:12029–12039. doi: 10.1128/JVI.00315-07.
    1. Ahlawat S, Asha Sharma KK. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res. 2020;286(198103) doi: 10.1016/j.virusres.2020.198103.
    1. Dai YJ, Hu F, Li H, Huang HY, Wang DW, Liang Y. A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection. Ann Transl Med. 2020;8(481) doi: 10.21037/atm.2020.03.61.
    1. Puddu P, Carollo MG, Belardelli F, Valenti P, Gessani S. Role of endogenous interferon and LPS in the immunomodulatory effects of bovine lactoferrin in murine peritoneal macrophages. J Leukoc Biol. 2007;82:347–353. doi: 10.1189/jlb.1106688.
    1. Puddu P, Valenti P, Gessani S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie. 2009;91:11–18. doi: 10.1016/j.biochi.2008.05.005.
    1. Siqueiros-Cendón T, Arévalo-Gallegos S, Iglesias-Figueroa BF, García-Montoya IA, Salazar-Martínez J, Rascón-Cruz Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol Sin. 2014;35:557–566. doi: 10.1038/aps.2013.200.
    1. Actor JK, Hwang SA, Kruzel ML. Lactoferrin as a natural immune modulator. Curr Pharm Des. 2009;15:1956–1973. doi: 10.2174/138161209788453202.
    1. Liu KY, Comstock SS, Shunk JM, Monaco MH, Donovan SM. Natural killer cell populations and cytotoxic activity in pigs fed mother's milk, formula, or formula supplemented with bovine lactoferrin. Pediatr Res. 2013;74:402–407. doi: 10.1038/pr.2013.125.
    1. MacManus CF, Collins CB, Nguyen TT, Alfano RW, Jedlicka P, de Zoeten EF. VEN-120, a recombinant human lactoferrin, promotes a regulatory T cell [Treg] phenotype and drives resolution of inflammation in distinct murine models of inflammatory bowel disease. J Crohns Colitis. 2017;11:1101–1112. doi: 10.1093/ecco-jcc/jjx056.
    1. Kuhara T, Yamauchi K, Tamura Y, Okamura H. Oral administration of lactoferrin increases NK cell activity in mice via increased production of IL-18 and type I IFN in the small intestine. J Interferon Cytokine Res. 2006;26:489–499. doi: 10.1089/jir.2006.26.489.
    1. Haller O, Kochs G, Weber F. The interferon response circuit: Induction and suppression by pathogenic viruses. Virology. 2006;344:119–130. doi: 10.1016/j.virol.2005.09.024.
    1. Legrand D. Overview of lactoferrin as a natural immune modulator. J Pediatr. 2016;173 (Suppl):S10–S15. doi: 10.1016/j.jpeds.2016.02.071.
    1. Wakabayashi H, Oda H, Yamauchi K, Abe F. Lactoferrin for prevention of common viral infections. J Infect Chemother. 2014;20:666–671. doi: 10.1016/j.jiac.2014.08.003.
    1. Borchers AT, Chang C, Gershwin ME, Gershwin LJ. Respiratory syncytial virus-a comprehensive review. Clin Rev Allergy Immunol. 2013;45:331–379. doi: 10.1007/s12016-013-8368-9.
    1. Berlutti F, Pantanella F, Natalizi T, Frioni A, Paesano R, Polimeni A, Valenti P. Antiviral properties of lactoferrin-a natural immunity molecule. Molecules. 2011;16:6992–7018. doi: 10.3390/molecules16086992.
    1. Legrand D, Elass E, Carpentier M, Mazurier J. Lactoferrin: A modulator of immune and inflammatory responses. Cell Mol Life Sci. 2005;62:2549–2559. doi: 10.1007/s00018-005-5370-2.

Source: PubMed

3
Subscribe