Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive Transcranial Magnetic Stimulation as a New Electrophysiological Finding in Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease: Results from a 4-year Prospective Cohort Study

Alessandro Trebbastoni, Floriana Pichiorri, Fabrizia D'Antonio, Alessandra Campanelli, Emanuela Onesti, Marco Ceccanti, Carlo de Lena, Maurizio Inghilleri, Alessandro Trebbastoni, Floriana Pichiorri, Fabrizia D'Antonio, Alessandra Campanelli, Emanuela Onesti, Marco Ceccanti, Carlo de Lena, Maurizio Inghilleri

Abstract

Introduction: To investigate cortical excitability and synaptic plasticity in amnestic mild cognitive impairment (aMCI) using 5 Hz repetitive transcranial magnetic stimulation (5 Hz-rTMS) and to assess whether specific TMS parameters predict conversion time to Alzheimer's disease (AD).

Materials and methods: Forty aMCI patients (single- and multi-domain) and 20 healthy controls underwent, at baseline, a neuropsychological examination and 5 Hz-rTMS delivered in trains of 10 stimuli and 120% of resting motor threshold (rMT) intensity over the dominant motor area. The rMT and the ratio between amplitude of the 1st and the 10th motor-evoked potential elicited by the train (X/I-MEP ratio) were calculated as measures of cortical excitability and synaptic plasticity, respectively. Patients were followed up annually over a period of 48 months. Analysis of variance for repeated measures was used to compare TMS parameters in patients with those in controls. Spearman's correlation was performed by considering demographic variables, aMCI subtype, neuropsychological test scores, TMS parameters, and conversion time.

Results: Thirty-five aMCI subjects completed the study; 60% of these converted to AD. The baseline rMT and X/I-MEP ratio were significantly lower in patients than in controls (p = 0.04 and p = 0.01). Spearman's analysis showed that conversion time correlated with the rMT (0.40) and X/I-MEP ratio (0.51).

Discussion: aMCI patients displayed cortical hyperexcitability and altered synaptic plasticity to 5 Hz-rTMS when compared with healthy subjects. The extent of these changes correlated with conversion time. These alterations, which have previously been observed in AD, are thus present in the early stages of disease and may be considered as potential neurophysiological markers of conversion from aMCI to AD.

Keywords: Alzheimer’s disease; N-methyl-d-aspartate acid receptor; cortical excitability; mild cognitive impairment; synaptic plasticity; transcranial magnetic stimulation.

Figures

Figure 1
Figure 1
Study design. At the baseline (T0), all the participants enrolled underwent a neuropsychological evaluation (NPS), a physical examination (PE), blood samples (Lab), and 5 Hz-rTMS. The cohort of aMCI subjects then started the longitudinal observational period. At each time point, the patients were reassessed in order to determine whether they had converted to dementia. Subjects who fulfilled the diagnostic criteria for aMCI (non-converters) at each time point continued the study to the subsequent follow-up visit. Converters were instead excluded from the study.
Figure 2
Figure 2
Average motor-evoked potential (MEP) amplitude across trains of 5 Hz-rTMS in the two groups. Vertical bars denote 0.95 confidence intervals. Repeated measures ANOVA showed a significant interaction of factors “Number of Stimulus” (x-axis) and “Group” (healthy vs. aMCI). Bonferroni’s correction revealed that while there was no significant difference across stimuli in the MCI group, there was a significant increase in MEP amplitude in healthy controls from the seventh stimulus onward.
Figure 3
Figure 3
Scatter plots of resting motor threshold (rMT) (A), X/I-MEP ratio (B) and time of conversion to AD in the 21 converters. Spearman’s rank correlation index (rs) is shown for each variable.

References

    1. Alagona G., Bella R., Ferri R., Carnemolla A., Pappalardo A., Costanzo E., et al. (2001). Transcranial magnetic stimulation in Alzheimer disease: motor cortex excitability and cognitive severity. Neurosci. Lett. 314, 57–60.10.1016/S0304-3940(01)02288-1
    1. Alberici A., Bonato C., Calabria M., Agosti C., Zanetti O., Miniussi C., et al. (2008). The contribution of TMS to frontotemporal dementia variants. Acta Neurol. Scand. 118, 275–280.10.1111/j.1600-0404.2008.01017.x
    1. Appollonio I., Leone M., Isella V., Piamarta F., Consoli T., Villa M. L. (2005). The frontal assessment battery (FAB): normative values in an Italian population sample. Neurol. Sci. 26, 108–116.10.1007/s10072-005-0443-4
    1. Arevalo-Rodriguez I., Smailagic N., Roqué I., Figuls M., Ciapponi A., Sanchez-Perez E., et al. (2015). Mini-mental state examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 3, CD010783.10.1002/14651858.CD010783.pub2
    1. Barker A. T., Jalinous R., Freeston I. L. (1985). Non-invasive magnetic stimulation of human motor cortex. Lancet 1, 1106–1107.10.1016/S0140-6736(85)92413-4
    1. Basso A., Capitani E., Laiacona M. (1987). Raven’s coloured progressive matrices: normative values on 305 adult normal controls. Funct. Neurol. 2, 189–194.
    1. Baudry M., Lynch G. (2001). Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol. Learn. Mem. 76, 284–297.10.1006/nlme.2001.4023
    1. Bell K. F., Bennett D. A., Cuello A. C. (2007). Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J. Neurosci. 27, 10810–10817.10.1523/JNEUROSCI.3269-07.2007
    1. Bennett D. A. (2003). Update on mild cognitive impairment. Curr. Neurol. Neurosci. Rep. 3, 379–384.10.1007/s11910-003-0020-2
    1. Berardelli A., Inghilleri M., Rothwell J. C., Romeo S., Currà A., Gilio F., et al. (1998). Facilitation of muscle evoked responses after repetitive cortical stimulation in man. Exp. Brain Res. 122, 79–84.10.1007/s002210050493
    1. Braak H., Braak E., Bohl J., Bratzke H. (1998). Evolution of Alzheimer’s disease related cortical lesions. J. Neural. Transm. Suppl. 54, 97–106.10.1007/978-3-7091-7508-8_9
    1. Caffarra P., Gardini S., Zonato F., Concari L., Dieci F., Copelli S. (2011). Italian norms for the Freedman version of the clock drawing test. J. Clin. Exp. Neuropsychol. 33, 982–988.10.1080/13803395.2011.589373
    1. Caffarra P., Vezzadini G., Dieci F., Zonato F., Venneri A. (2002). Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol. Sci. 22, 443–447.10.1007/s100720200003
    1. Carlesimo G. A., Caltagirone C., Gainotti G. (1996). The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. Eur. Neurol. 36, 378–384.10.1159/000117297
    1. Castro-Alamancos M. A., Connors B. W. (1996). Short-term synaptic enhancement and long-term potentiation in neocortex. Proc. Natl. Acad. Sci. U.S.A. 93, 1335–1339.10.1073/pnas.93.3.1335
    1. Danysz W., Parsons C. G. (2012). Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine – searching for the connections. Br. J. Pharmacol. 167, 324–352.10.1111/j.1476-5381.2012.02057.x
    1. de Carvalho M., de Mendonça A., Miranda P. C., Garcia C., Luís M. L. (1997). Magnetic stimulation in Alzheimer’s disease. J. Neurol. 244, 304–307.10.1007/s004150050091
    1. Di Lazzaro V., Oliviero A., Pilato F., Saturno E., Dileone M., Marra C., et al. (2004). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatr. 75, 555–559.10.1136/jnnp.2003.018127
    1. Di Lazzaro V., Oliviero A., Pilato F., Saturno E., Dileone M., Tonali P. A. (2003a). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease: evidence of impaired glutamatergic neurotransmission? Ann. Neurol. 53, 824.10.1002/ana.10600
    1. Di Lazzaro V., Oliviero A., Profice P., Pennisi M. A., Pilato F., Zito G., et al. (2003b). Ketamine increases motor cortex excitability to transcranial magnetic stimulation. J. Physiol. 547, 485–496.10.1113/jphysiol.2002.030486
    1. Di Lazzaro V., Oliviero A., Tonali P. A., Marra C., Daniele A., Profice P., et al. (2002). Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59, 392–397.10.1212/WNL.59.3.392
    1. Di Lazzaro V., Pilato F., Dileone M., Saturno E., Oliviero A., Marra C., et al. (2006). In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer dementias. Neurology 66, 1111–1113.10.1212/01.wnl.0000204183.26231.23
    1. Drago V., Babiloni C., Bartrés-Faz D., Caroli A., Bosch B., Hensch T., et al. (2011). Disease tracking markers for Alzheimer’s disease at the prodromal (MCI) stage. J. Alzheimers Dis. 26(Suppl. 3), 159–199.10.3233/JAD-2011-0043
    1. Ebly E. M., Hogan D. B., Parhad I. M. (1995). Cognitive impairment in the nondemented elderly. Results from the Canadian study of health and aging. Arch. Neurol. 52, 612–619.10.1001/archneur.1995.00540300086018
    1. Espinosa A., Alegret M., Valero S., Vinyes-Junqué G., Hernández I., Mauleón A., et al. (2013). A longitudinal follow-up of 550 mild cognitive impairment patients: evidence for large conversion to dementia rates and detection of major risk factors involved. J. Alzheimers Dis. 34, 769–780.10.3233/JAD-122002
    1. Farias S. T., Mungas D., Reed B. R., Harvey D., DeCarli C. (2009). Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch. Neurol. 66, 1151–1157.10.1001/archneurol.2009.106
    1. Farlow M. R. (2004). NMDA receptor antagonists. A new therapeutic approach for Alzheimer’s disease. Geriatrics 59, 22–27.
    1. Fazekas F., Chawluk J. B., Alavi A., Hurtig H. I., Zimmerman R. A. (1987). MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 149, 351–356.10.2214/ajr.149.2.351
    1. Ferreri F., Pauri F., Pasqualetti P., Fini R., Dal Forno G., Rossini P. M. (2003). Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation study. Ann. Neurol. 53, 102–108.10.1002/ana.10416
    1. Flicker C., Ferris S. H., Reisberg B. (1991). Mild cognitive impairment in the elderly: predictors of dementia. Neurology 41, 1006–1009.10.1212/WNL.41.7.1006
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198.10.1016/0022-3956(75)90026-6
    1. Geslani D., Tierney M. C., Herrmann N., Szalai J. (2005). Mild cognitive impairment: an operational definition and its conversion rate to Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 19, 383–389.10.1159/000084709
    1. Giovagnoli A. R., Del Pesce M., Mascheroni S., Simoncelli M., Laiacona M., Capitani E. (1996). Trail making test: normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 17, 305–309.10.1007/BF01997792
    1. Hampel H., Bürger K., Teipel S. J., Bokde A. L., Zetterberg H., Blennow K. (2008). Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement. 4, 38–48.10.1016/j.jalz.2007.08.006
    1. Hanson J. E., Pare J. F., Deng L., Smith Y., Zhou Q. (2015). Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer’s disease. Neurobiol. Dis. 74, 254–262.10.1016/j.nbd.2014.11.017
    1. Höffken O., Haussleiter I. S., Westermann A., Lötsch J., Maier C., Tegenthoff M., et al. (2013). Influence of (S)-ketamine on human motor cortex excitability. Exp. Brain Res. 225, 47–53.10.1007/s00221-012-3347-6
    1. Hoogendam J. M., Ramakers G. M., Di Lazzaro V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul. 3, 95–118.10.1016/j.brs.2009.10.005
    1. Inghilleri M., Conte A., Frasca V., Curra’ A., Gilio F., Manfredi M., et al. (2004). Antiepileptic drugs and cortical excitability: a study with repetitive transcranial stimulation. Exp. Brain Res. 154, 488–493.10.1007/s00221-003-1685-0
    1. Inghilleri M., Conte A., Frasca V., Gilio F., Lorenzano C., Berardelli A. (2005). Synaptic potentiation induced by rTMS. Effect of lidocaine infusion. Exp. Brain Res. 163, 114–117.10.1007/s00221-005-2225-x
    1. Inghilleri M., Conte A., Frasca V., Scaldaferri N., Gilio F., Santini M., et al. (2006). Altered response to rTMS in patients with Alzheimer’s disease. Clin. Neurophysiol. 117, 103–109.10.1016/j.clinph.2005.09.016
    1. Jennum P., Winkel H., Fuglsang-Frederiksen A. (1995). Repetitive magnetic stimulation and motor evoked potentials. Electroencephalogr. Clin. Neurophysiol. 97, 96–101.10.1016/0924-980X(94)00293-G
    1. Kamenetz F., Tomita T., Hsieh H., Seabrook G., Borchelt D., Iwatsubo T., et al. (2003). APP processing and synaptic function. Neuron 37, 925–937.10.1016/S0896-6273(03)00124-7
    1. Kobayashi M., Pascual-Leone A. (2003). Transcranial magnetic stimulation in neurology. Lancet Neurol. 2, 145–156.10.1016/S1474-4422(03)00321-1
    1. Kral V. A. (1962). Senescent forgetfulness: benign and malignant. Can. Med. Assoc. J. 86, 257–260.
    1. Lawton M. P., Brody E. M. (1969). Assessment of older people: self-­maintaining and instrumental activities of daily living. Gerontologist 9, 179–186.10.1093/geront/9.3_Part_1.179
    1. Levy R. (1994). Aging-associated cognitive decline. Working party of the international psychogeriatric association in collaboration with the world health organization. Int. Psychogeriatr. 6, 63–68.10.1017/S1041610294001626
    1. Malenka R. C., Bear M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5–21.10.1016/j.neuron.2004.09.012
    1. Martin S. J., Grimwood P. D., Morris R. G. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711.10.1146/annurev.neuro.23.1.649
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34, 939–944.10.1212/WNL.34.7.939
    1. Mitchell A. J., Shiri-Feshki M. (2009). Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 119, 252–265.10.1111/j.1600-0447.2008.01326.x
    1. Modugno N., Nakamura Y., MacKinnon C. D., Filipovic S. R., Bestmann S., Berardelli A., et al. (2001). Motor cortex excitability following short trains of repetitive magnetic stimuli. Exp. Brain Res. 140, 453–459.10.1007/s002210100843
    1. Moodley K. K., Chan D. (2014). The hippocampus in neurodegenerative disease. Front. Neurol. Neurosci. 34:95–108.10.1159/000356430
    1. Morris J. C. (1993). The clinical dementia rating (CDR): current version and scoring rules. Neurology 43, 2412–2414.10.1212/WNL.43.11.2412-a
    1. Mota S. I., Ferreira I. L., Rego A. C. (2014). Dysfunctional synapse in Alzheimer’s disease – a focus on NMDA receptors. Neuropharmacology 76 Pt A, 16–26.10.1016/j.neuropharm.2013.08.013
    1. Nardone R., Bergmann J., Christova M., Caleri F., Tezzon F., Ladurner G., et al. (2012). Short latency afferent inhibition differs among the subtypes of mild cognitive impairment. J. Neural Transm. 119, 463–471.10.1007/s00702-011-0725-3
    1. Nardone R., Bergmann J., Kronbichler M., Kunz A., Klein S., Caleri F., et al. (2008). Abnormal short latency afferent inhibition in early Alzheimer’s disease: a transcranial magnetic demonstration. J. Neural Transm. 115, 1557–1562.10.1007/s00702-008-0129-1
    1. Nardone R., Bratti A., Tezzon F. (2006). Motor cortex inhibitory circuits in dementia with Lewy bodies and in Alzheimer’s disease. J. Neural Transm. 113, 1679–1684.10.1007/s00702-006-0551-1
    1. Nardone R., Tezzon F., Höller Y., Golaszewski S., Trinka E., Brigo F. (2014). Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurol. Scand. 129, 351–366.10.1111/ane.12223
    1. Neves G., Cooke S. F., Bliss T. V. (2008). Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75.10.1038/nrn2303
    1. Niskanen E., Könönen M., Määttä S., Hallikainen M., Kivipelto M., Casarotto S., et al. (2011). New insights into Alzheimer’s disease progression: a combined TMS and structural MRI study. PLoS ONE 6:e26113.10.1371/journal.pone.0026113
    1. Novelli G., Papagno C., Capitani E., Laiacona M., Cappa S. F., Vallar G. (1996). Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch. Psicol. Neurol. Psichiatr. 47, 477–506.
    1. Orsini A., Grossi D., Capitani E., Laiacona M., Papagno C., Vallar G. (1987). Verbal and spatial immediate memory span: normative data from 1355 adults and 1112 children. Ital. J. Neurol. Sci. 8, 539–548.10.1007/BF02333660
    1. Pascual-Leone A., Tormos J. M., Keenan J., Tarazona F., Cañete C., Catalá M. D. (1998). Study and modulation of human cortical excitability with transcranial magnetic stimulation. J. Clin. Neurophysiol. 15, 333–343.10.1097/00004691-199807000-00005
    1. Pascual-Leone A., Valls-Sollè J., Wasserman E. M., Hallett M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117, 847–858.10.1093/brain/117.4.847
    1. Pennisi G., Alagona G., Ferri R., Greco S., Santonocito D., Pappalardo A., et al. (2002). Motor cortex excitability in Alzheimer disease: one year follow-up study. Neurosci. Lett. 329, 293–296.10.1016/S0304-3940(02)00701-2
    1. Pennisi G., Ferri R., Lanza G., Cantone M., Pennisi M., Puglisi V., et al. (2011). Transcranial magnetic stimulation in Alzheimer’s disease: a neurophysiological marker of cortical hyperexcitability. J. Neural Transm. 118, 587–598.10.1007/s00702-010-0554-9
    1. Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194.10.1111/j.1365-2796.2004.01388.x
    1. Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., Kokmen E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308.10.1001/archneur.56.3.303
    1. Petersen R. C., Thomas R. G., Grundman M., Bennett D., Doody R., Ferris S., et al. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 352, 2379–2388.10.1056/NEJMoa050151
    1. Reisberg B., Ferris S. H., de Leon M. J., Crook T. (1982). The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiatry 139, 1136–1139.10.1176/ajp.139.9.1136
    1. Ridding M. C., Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588(Pt 13), 2291–2304.10.1113/jphysiol.2010.190314
    1. Romeo S., Gilio F., Pedace F., Ozkaynak S., Inghilleri M., Manfredi M. (2000). Changes in the cortical silent period after repetitive magnetic stimulation of cortical motor areas. Exp. Brain Res. 135, 504–510.10.1007/s002210000541
    1. Rossi S., Hallett M., Rossini P. M., Pascual-Leone A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039.10.1016/j.clinph.2009.08.016
    1. Sakuma K., Murakami T., Nakashima K. (2007). Short latency afferent inhibition is not impaired in mild cognitive impairment. Clin. Neurophysiol. 118, 1460–1463.10.1016/j.clinph.2007.03.018
    1. Schaeffer E. L., Gattaz W. F. (2008). Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology (Berl.) 198, 1–27.10.1007/s00213-008-1092-0
    1. Scheuer K., Maras A., Gattaz W. F., Cairns N., Förstl H., Müller W. E. (1996). Cortical NMDA receptor properties and membrane fluidity are altered in Alzheimer’s disease. Dementia 7, 210–214.
    1. Shankar G. M., Li S., Mehta T. H., Garcia-Munoz A., Shepardson N. E., Smith I. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat. Med. 14, 837–842.10.1038/nm1782
    1. Spinnler H., Tognoni G. (1987). Standardizzazione e taratura italiana di test neuropsicologici. Ital. J. Neurol. Sci. (Suppl. 8), 1–20.
    1. Terranova C., SantAngelo A., Morgante F., Rizzo V., Allegra R., Arena M. G., et al. (2013). Impairment of sensory-motor plasticity in mild Alzheimer’s disease. Brain Stimul. 6, 62–66.10.1016/j.brs.2012.01.010
    1. Tokuchi R., Hishikawa N., Kurata T., Sato K., Kono S., Yamashita T., et al. (2014). Clinical and demographic predictors of mild cognitive impairment for converting to Alzheimer’s disease and reverting to normal cognition. J. Neurol. Sci. 346, 288–292.10.1016/j.jns.2014.09.012
    1. Trebbastoni A., Gilio F., D’Antonio F., Cambieri C., Ceccanti M., de Lena C., et al. (2012). Chronic treatment with rivastigmine in patients with Alzheimer’s disease: a study on primary motor cortex excitability tested by 5 Hz-repetitive transcranial magnetic stimulation. Clin. Neurophysiol. 123, 902–909.10.1016/j.clinph.2011.09.010
    1. Vallence A. M., Ridding M. C. (2014). Non-invasive induction of plasticity in the human cortex: uses and limitations. Cortex 58, 261–271.10.1016/j.cortex.2013.12.006
    1. Van Gorp W. G., Satz P., Kiersch M. E., Henry R. (1986). Normative data on the Boston naming test for a group of normal older adults. J. Clin. Exp. Neuropsychol. 8, 702–705.10.1080/01688638608405189
    1. van Marwijk H. W., Wallace P., de Bock G. H., Hermans J., Kaptein A. A., Mulder J. D. (1995). Evaluation of the feasibility, reliability and diagnostic value of shortened versions of the geriatric depression scale. Br. J. Gen. Pract. 45, 195–199.
    1. van Rossum I. A., Vos S., Handels R., Visser P. J. (2010). Biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer-type dementia: implications for trial design. J. Alzheimers Dis. 20, 881–891.10.3233/JAD-2010-091606
    1. Varga E., Juhász G., Bozsó Z., Penke B., Fülöp L., Szegedi V. (2015). Amyloid-β1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. J. Alzheimers Dis. 45, 449–456.10.3233/JAD-142367
    1. Walsh D. M., Selkoe D. J. (2004). Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44, 181–193.10.1016/j.neuron.2004.09.010
    1. Winblad B., Palmer K., Kivipelto M., Jelic V., Fratiglioni L., Wahlund L. O., et al. (2004). Mild cognitive impairment – beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J. Intern. Med. 256, 240–246.10.1111/j.1365-2796.2004.01380.x

Source: PubMed

3
Subscribe