Regulation of the cerebral circulation: bedside assessment and clinical implications

Joseph Donnelly, Karol P Budohoski, Peter Smielewski, Marek Czosnyka, Joseph Donnelly, Karol P Budohoski, Peter Smielewski, Marek Czosnyka

Abstract

Regulation of the cerebral circulation relies on the complex interplay between cardiovascular, respiratory, and neural physiology. In health, these physiologic systems act to maintain an adequate cerebral blood flow (CBF) through modulation of hydrodynamic parameters; the resistance of cerebral vessels, and the arterial, intracranial, and venous pressures. In critical illness, however, one or more of these parameters can be compromised, raising the possibility of disturbed CBF regulation and its pathophysiologic sequelae. Rigorous assessment of the cerebral circulation requires not only measuring CBF and its hydrodynamic determinants but also assessing the stability of CBF in response to changes in arterial pressure (cerebral autoregulation), the reactivity of CBF to a vasodilator (carbon dioxide reactivity, for example), and the dynamic regulation of arterial pressure (baroreceptor sensitivity). Ideally, cerebral circulation monitors in critical care should be continuous, physically robust, allow for both regional and global CBF assessment, and be conducive to application at the bedside. Regulation of the cerebral circulation is impaired not only in primary neurologic conditions that affect the vasculature such as subarachnoid haemorrhage and stroke, but also in conditions that affect the regulation of intracranial pressure (such as traumatic brain injury and hydrocephalus) or arterial blood pressure (sepsis or cardiac dysfunction). Importantly, this impairment is often associated with poor patient outcome. At present, assessment of the cerebral circulation is primarily used as a research tool to elucidate pathophysiology or prognosis. However, when combined with other physiologic signals and online analytical techniques, cerebral circulation monitoring has the appealing potential to not only prognosticate patients, but also direct critical care management.

Figures

Fig. 1
Fig. 1
Regulation of the cerebral circulation. CBF at the level of the microvasculature is directly proportional to CPP (difference between ABP and ICP) and inversely proportional to CVR. ICP exerts its effect on CBF through changes in CPP; compression of the venous vasculature where the bridging veins enter the sagittal sinus ensures that the bridging vein and post-capillary intravascular pressure is always above ICP. CBF is modulated by the cardiovascular system in terms of the regulation of SV, HR, and TPR (red). Control of TPR with vasopressors forms an integral part of many CBF protective strategies (even when TPR is not the primary cause of CBF disturbance). CVR is regulated at the level of the arterioles (purple) by variations in vascular tone in response to metabolic, neural, or myogenic inputs. In ischaemic stroke or vasospasm, CVR is dramatically increased, usually at the level of large intracranial arteries. ICP (blue) modulates CBF through its coupling with cerebral venous pressure. ICP increases can be caused by increases in cerebral blood volume (arterial or venous), increased CSF volume or increase in parenchyma (oedema), or abnormal material volume (mass lesion). All therapies that modulate CBF do so via one (or more) of these pathways. There is typically significant interdependence between the therapies, determinants, and influences of CBF. For example, a drop in ABP would be expected to result in a drop in CBF but this is short lived due to the baroreflex (HR increase in response to drop in ABP) and cerebral autoregulation (decrease in vascular tone in response to drop in ABP). ABP arterial blood pressure, CBF cerebral blood flow, CBV cerebral blood volume, CSF V cerebrospinal fluid volume, CVR cerebrovascular resistance, EVD external ventricular drainage, HR heart rate, ICP intracranial pressure, IIH idiopathic intracranial hypertension, SV stroke volume, TPR total peripheral resistance
Fig. 2
Fig. 2
CO2 reactivity after TBI. CO2 reactivity is a measure indicating how well vascular responses in the brain are preserved. Mild hyperventilation (PaCO2 challenge from 35 to 31.5 mmHg) is applied temporarily (1 h) in the patient after TBI. Right CBF velocity (FVR) in the middle cerebral artery decreased from 120 to 100 cm/s. CO2 reactivity is calculated as ∆CBF velocity (%)/∆ PaCO2 and in this case reactivity is ~ 5 %/mmHg—very good. However, at the same time ICP decreased from 32 to 27 mmHg and blood pressure (ABP) increased from 120 to 125 mmHg. Therefore, CPP increased from 88 to 98 mmHg. The formula for cerebrovascular CO2 reactivity does not take into account the possible interaction between chemoregulation and autoregulation. ABP arterial blood pressure, ICP intracranial pressure
Fig. 3
Fig. 3
Long-term invasive CBF and CPP monitoring. Example of the ‘Lassen curve’ depicting the relationship between CPP and CBF. It is derived from a long-term plot of thermal-dilution CBF and CPP monitored in a patient after severe brain injury. The curve shows lower (LLA) and upper (ULA) limits of autoregulation, outside which CBF is pressure passive. Notably, within the autoregulation range, CBF is not ideally stable but shows an increase in CBF around the LLA, which is commonly observed in patients under mild hyperventilation (in this case PaCO2 was on average 32 mmHg). CBF cerebral blood flow, CPP cerebral perfusion pressure, ICP intracranial pressure
Fig. 4
Fig. 4
Cerebral perfusion monitoring in SAH. On day 3 after ictus (top 4 panels), this patient with SAH from an aneurysm of the middle cerebral artery displays a normal middle cerebral artery Fv (~60 cm/s) and intact autoregulation (TOxa and Mxa ~0 (suffix ‘a’ indicates that ABP is used instead of CPP)). On day 7 (bottom 4 panels) a marked increase in Fv (to 120 cm/s) can be seen, which is accompanied by an impairment in autoregulation (TOxa and Mxa close to 0). The transient hyperaemic response test also failed to show an increase in Fv after the release of occlusion, an indicator of impaired cerebral autoregulation. ABP arterial blood pressure, Fv flow velocity, Mxa mean flow index (with ABP), TOxa total oxygenation reactivity index (with ABP)
Fig. 5
Fig. 5
Continuous cerebral autoregulation monitoring during refractory intracranial hypertension. Continuous monitoring of cerebral autoregulation using PRx in a patient after severe TBI, who died after 6 days because of refractory intracranial hypertension. During the first 3 days ICP was stable, around 20 mmHg. However, PRx showed good autoregulation only during the first day (PRx PbtiO2) were satisfactory. After day 4, PRx was persistently elevated to >0.7. On day 6, ICP increased abruptly to 70 mmHg, CPP fell to 20 mmHg, and oxygen tension fell below 5 mmHg. The patient died in a scenario of brain-stem herniation. The only parameter which deteriorated early in this case was the index of cerebral autoregulation PRx. ABP arterial blood pressure, CPP cerebral perfusion pressure, ICP intracranial pressure, PRx pressure reactivity index
Fig. 6
Fig. 6
Long-term monitoring of PRx in a patient after TBI. ICP was first elevated to 20 mmHg and then decreased, showing some fluctuations over 7 days of monitoring. PRx had parabolic distribution along the recorded range of CPP (from 60 to 100 mmHg). The minimum of this parabola indicates ‘optimal CPP’ from the whole 7-day period (90 mmHg in this case—as compared with above 65–70 mmHg, advised by guidelines—which illustrates well that CPP-oriented management must be individualised; it is not true that one shoe size is good for everybody). Moreover, such a fitting of an ‘optimal curve’ may be repeated in time, based on data from the past 4 h. This enables prospective detection and tracing of ‘optimal CPP’ and targeting current CPP at its current optimal value, which may change in a course of intensive care. CPP cerebral perfusion pressure, ICP intracranial pressure, PRx pressure reactivity index
Fig. 7
Fig. 7
Monitoring of cerebral autoregulation during cardiopulmonary bypass surgery (re-analysis of raw data recording reported by Brady et al. [100]). TCD-derived autoregulation index Mxa fluctuates seemingly in a chaotic manner during surgery (period of laminar flow is denoted by near-zero pulse amplitude of the Fv waveform). However, its distribution along recorded blood pressure values resembles a parabolic curve—the same as seen in TBI patients—with its minimum indicating hypothetical ‘optimal’ blood pressure (in this case 96 mmHg). Adapted with permission of Prof. Charles Hogue and co-workers (John Hopkins Medical University) [100]. ABP arterial blood pressure, Fv flow velocity, Mxa mean flow index (with ABP)

References

    1. Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82:1256–69.
    1. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63:721–31. doi: 10.1136/jnnp.63.6.721.
    1. Roy CS, Sherrington CS. On the regulation of the blood-supply of the brain. J Physiol. 1890;11:85–158. doi: 10.1113/jphysiol.1890.sp000321.
    1. Cavus E, Bein B, Dörges V, Stadlbauer K-H, Wenzel V, Steinfath M, Hanss R, Scholz J. Brain tissue oxygen pressure and cerebral metabolism in an animal model of cardiac arrest and cardiopulmonary resuscitation. Resuscitation. 2006;71:97–106. doi: 10.1016/j.resuscitation.2006.03.007.
    1. Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. Crit Care Med. 1989;17:399–403. doi: 10.1097/00003246-198905000-00004.
    1. Nakagawa Y, Tsuru M, Yada K. Site and mechanism for compression of the venous system during experimental intracranial hypertension. J Neurosurg. 1974;41:427–34. doi: 10.3171/jns.1974.41.4.0427.
    1. Piechnik SK, Czosnyka M, Richards HK, Whitfield PC, Pickard JD. Cerebral venous blood outflow: a theoretical model based on laboratory simulation. Neurosurgery. 2001;49:1214–22.
    1. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468:232–43. doi: 10.1038/nature09613.
    1. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60. doi: 10.1038/nature13165.
    1. Willie CK, Tzeng Y-C, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592:841–59. doi: 10.1113/jphysiol.2013.268953.
    1. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Rev. 2004;46:243–60. doi: 10.1016/j.brainresrev.2004.04.005.
    1. Lee SP, Duong TQ, Yang G, Iadecola C, Kim SG. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for bold fMRI. Magn Reson Med. 2001;45:791–800. doi: 10.1002/mrm.1107.
    1. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83:1140–4. doi: 10.1073/pnas.83.4.1140.
    1. Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:1227–34. doi: 10.3171/jns.2003.98.6.1227.
    1. Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1473–95. doi: 10.1152/ajpregu.91008.2008.
    1. Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol. 1989;67:2101–6.
    1. Zappe A, Uludaǧ K, Oeltermann A, Uǧurbil K, Logothetis N. The influence of moderate hypercapnia on neural activity in the anesthetized nonhuman primate. Cereb Cortex. 2008;18:2666–73. doi: 10.1093/cercor/bhn023.
    1. Phillips AA, Chan FHN, Mu M, Zheng Z, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab. 2015. [Epub ahead of print].
    1. Peterson EC, Wang Z, Britz G. Regulation of cerebral blood flow. Int J Vasc Med. 2011;2011:1–8. doi: 10.1155/2011/823525.
    1. Jackman K, Iadecola C. Neurovascular regulation in the ischemic brain. Antioxid Redox Signal. 2015;22:149–60. doi: 10.1089/ars.2013.5669.
    1. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10:1369–76. doi: 10.1038/nn2003.
    1. Girouard H. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol. 2006;100:328–35. doi: 10.1152/japplphysiol.00966.2005.
    1. Strandgaard S, Sigurdsson ST. Point:Counterpoint: sympathetic activity does/does not influence cerebral blood flow. Counterpoint: sympathetic nerve activity does not influence cerebral blood flow. J Appl Physiol. 2008;105:1366–7. doi: 10.1152/japplphysiol.90597.2008a.
    1. van Lieshout JJ, Secher NH. Point:Counterpoint: sympathetic nerve activity does/does not influence cerebral blood flow. Point: sympathetic nerve activity does influence cerebral blood flow. J Appl Physiol. 2008;105:1364–6. doi: 10.1152/japplphysiol.90597.2008.
    1. Ainslie PN, Brassard P. Why is the neural control of cerebral autoregulation so controversial? F1000 Prime Rep. 2014;6:14. doi: 10.12703/P6-14.
    1. Visocchi M, Chiappini F, Cioni B, Meglio M. Cerebral blood flow velocities and trigeminal ganglion stimulation. A transcranial Doppler study. Stereotact Funct Neurosurg. 1996;66:184–92. doi: 10.1159/000099687.
    1. Umeyama T, Kugimiya T, Ogawa T, Kandori Y, Ishizuka A, Hanaoka K. Changes in cerebral blood flow estimated after stellate ganglion block by single photon emission computed tomography. J Aut Nerv Syst. 1995;50:339–46. doi: 10.1016/0165-1838(94)00105-S.
    1. Meng L, Hou W, Chui J, Han R, Gelb AW. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123:1198–208. doi: 10.1097/ALN.0000000000000872.
    1. Ogoh S, Brothers RM, Barnes Q, Eubank WL, Hawkins MN, Purkayastha S, O-Yurvati A, Raven PB. The effect of changes in cardiac output on middle cerebral artery mean blood velocity at rest and during exercise. J Physiol. 2005;569(Pt 2):697–704. doi: 10.1113/jphysiol.2005.095836.
    1. Lanfranchi PA, Somers VK. Arterial baroreflex function and cardiovascular variability: interactions and implications. Am J Physiol Regul Integr Comp Physiol. 2002;283:R815–26. doi: 10.1152/ajpregu.00051.2002.
    1. Lassen N. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.
    1. Donnelly J, Aries MJH, Czosnyka M. Further understanding of cerebral autoregulation at the bedside: possible implications for future therapy. Expert Rev Neurother. 2015;15:169–85. doi: 10.1586/14737175.2015.996552.
    1. Willie CK, Colino FL, Bailey DM, Tzeng YC, Binsted G, Jones LW, Haykowsky MJ, Bellapart J, Ogoh S, Smith KJ, Smirl JD, Day TA, Lucas SJ, Eller LK, Ainslie PN. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods. 2011;196:221–37. doi: 10.1016/j.jneumeth.2011.01.011.
    1. Davies DJ, Su Z, Clancy MT, Lucas SJE, Dehghani H, Logan A, Belli A. Near-infrared spectroscopy in the monitoring of adult traumatic brain injury: a review. J Neurotrauma. 2015;32:933–41. doi: 10.1089/neu.2014.3748.
    1. Vajkoczy P, Roth H, Horn P, Lucke T, Thomé C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74. doi: 10.3171/jns.2000.93.2.0265.
    1. Rajan V, Varghese B, Van Leeuwen TG, Steenbergen W. Review of methodological developments in laser Doppler flowmetry. Lasers Med Sci. 2009;24:269–83. doi: 10.1007/s10103-007-0524-0.
    1. Rohlwink UK, Figaji AA. Methods of monitoring brain oxygenation. Child’s Nerv Syst. 2010;26:453–64. doi: 10.1007/s00381-009-1033-1.
    1. Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:1–9.
    1. Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol. 1998;274:H233–41.
    1. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27:1829–34. doi: 10.1161/01.STR.27.10.1829.
    1. Panerai RB. Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng. 2008;8:42–59. doi: 10.1007/s10558-007-9044-6.
    1. Smielewski P, Czosnyka M, Kirkpatrick P, Pickard JD. Evaluation of the transient hyperemic response test in head-injured patients. J Neurosurg. 1997;86:773–8. doi: 10.3171/jns.1997.86.5.0773.
    1. Menon DK. Cerebral protection in severe brain injury: physiological determinants of outcome and their optimisation. Br Med Bull. 1999;55:226–58. doi: 10.1258/0007142991902231.
    1. Overgaard J, Tweed W. Cerebral circulation after head injury. 1. Cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg. 1974;41:531–41. doi: 10.3171/jns.1974.41.5.0531.
    1. Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF. Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg. 1992;77:360–8. doi: 10.3171/jns.1992.77.3.0360.
    1. van Santbrink H, Schouten JW, Steyerberg EW, Avezaat CJJ, Maas AI. Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir (Wien) 2002;144:1141–9. doi: 10.1007/s00701-002-1012-8.
    1. Liu X, Czosnyka M, Donnelly J, Budohoski KP, Varsos GV, Nasr N, Brady KM, Reinhard M, Hutchinson PJ, Smielewski P. Comparison of frequency and time domain methods of assessment of cerebral autoregulation in traumatic brain injury. J Cereb Blood Flow Metab. 2014;11:1–9.
    1. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41:11–7. doi: 10.1097/00006123-199707000-00005.
    1. Poon W, Ng SCP, Chan MTV, Lam JMK, Lam WWM. Cerebral blood flow (CBF)-directed management of ventilated head-injured patients. Acta Neurochir Suppl. 2005;95:9–11. doi: 10.1007/3-211-32318-X_2.
    1. Schalen W, Messeter K, Nordstrom CH. Cerebral vasoreactivity and the prediction of outcome in severe traumatic brain lesions. Acta Anaesthesiol Scand. 1991;35:113–22. doi: 10.1111/j.1399-6576.1991.tb03258.x.
    1. Carmona Suazo JA, Maas AI, van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ. CO2 reactivity and brain oxygen pressure monitoring in severe head injury. Crit Care Med. 2000;28:3268–74. doi: 10.1097/00003246-200009000-00024.
    1. Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997;87:9–19. doi: 10.3171/jns.1997.87.1.0009.
    1. Aries MJH, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40:2456–63. doi: 10.1097/CCM.0b013e3182514eb6.
    1. Hashi K, Meyer JS, Shinmaru S, Welch KM, Teraura T. Changes in cerebral vasomotor reactivity to CO2 and autoregulation following experimental subarachnoid hemorrhage. J Neurol Sci. 1972;17:15–22. doi: 10.1016/0022-510X(72)90017-2.
    1. Mendelow AD, McCalden TA, Hattingh J, Coull A, Rosendorff C, Eidelman BH. Cerebrovascular reactivity and metabolism after subarachnoid hemorrhage in baboons. Stroke. 1981;12:58–65. doi: 10.1161/01.STR.12.1.58.
    1. Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Continuous assessment of cerebral autoregulation in subarachnoid hemorrhage. Anesth Analg. 2004;98:1133–9. doi: 10.1213/01.ANE.0000111101.41190.99.
    1. Pickard JD, Murray GD, Illingworth R, Shaw MDM, Teasdale GM, Foy PM, Humphrey PRD, Lang DA, Nelson R, Richards P, Sinar J, Bailey S, Skene A. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ. 1989;298:636–42. doi: 10.1136/bmj.298.6674.636.
    1. Budohoski K, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43:3230–7. doi: 10.1161/STROKEAHA.112.669788.
    1. Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD. Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol. 2014;13:666–75. doi: 10.1016/S1474-4422(14)70084-5.
    1. Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007;38:981–6. doi: 10.1161/01.STR.0000257964.65743.99.
    1. Pickard JD, Matheson M, Patterson J, Wyper D. Prediction of late ischemic complications after cerebral aneurysm surgery by the intraoperative measurement of cerebral blood flow. J Neurosurg. 1980;53:305–8. doi: 10.3171/jns.1980.53.3.0305.
    1. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:2097–101. doi: 10.1161/STROKEAHA.112.659888.
    1. Bijlenga P, Czosnyka M, Budohoski KP, Smielewski P, Soehle M, Pickard JD, Kirkpatrick PJ. “Optimal cerebral perfusion pressure” in poor grade patients after subarachnoid hemorrhage. Neurocrit Care. 2010;13:17–23. doi: 10.1007/s12028-010-9362-1.
    1. Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJB, Demaerschalk BM, Khatri P, McMullan PW, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947. doi: 10.1161/STR.0b013e318284056a.
    1. Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain. 2001;124(Pt 3):457–67. doi: 10.1093/brain/124.3.457.
    1. Firlik AD, Rubin G, Yonas H, Wechsler LR. Relation between cerebral blood flow and neurologic deficit resolution in acute ischemic stroke. Neurology. 1998;51:177–82. doi: 10.1212/WNL.51.1.177.
    1. Wintermark M, Reichhart M, Thiran JP, Maeder P, Chalaron M, Schnyder P, Bogousslavsky J, Meuli R. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol. 2002;51:417–32. doi: 10.1002/ana.10136.
    1. Cupini LM, Diomedi M, Placidi F, Silvestrini M, Giacomini P. Cerebrovascular reactivity and subcortical infarctions. Arch Neurol. 2001;58:577–81. doi: 10.1001/archneur.58.4.577.
    1. Alvarez FJ, Segura T, Castellanos M, Leira R, Blanco M, Castillo J, Davalos A, Serena J. Cerebral hemodynamic reserve and early neurologic deterioration in acute ischemic stroke. J Cereb Blood Flow Metab. 2004;24:1267–71.
    1. Aries MJH, Elting JW, De Keyser J, Kremer BPH, Vroomen PCAJ. Cerebral autoregulation in stroke a review of transcranial Doppler studies. Stroke. 2010;41:2697–704. doi: 10.1161/STROKEAHA.110.594168.
    1. Reinhard M, Rutsch S, Lambeck J, Wihler C, Czosnyka M, Weiller C, Hetzel A. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurol Scand. 2012;125:156–62. doi: 10.1111/j.1600-0404.2011.01515.x.
    1. Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci. 2014;15:379–93. doi: 10.1038/nrn3770.
    1. Woitzik J, Hecht N, Pinczolits A, Sandow N, Major S, Winkler MKL, Weber-Carstens S, Dohmen C, Graf R, Strong AJ, Dreier JP, Vajkoczy P. Propagation of cortical spreading depolarization in the human cortex after malignant stroke. Neurology. 2013;80:1095–102. doi: 10.1212/WNL.0b013e3182886932.
    1. Hartings JA, Bullock MR, Okonkwo DO, Murray LS, Murray GD, Fabricius M, Maas AI, Woitzik J, Sakowitz O, Mathern B, Roozenbeek B, Lingsma H, Dreier JP, Puccio AM, Shutter LA, Pahl C, Strong AJ. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol. 2011;10:1058–64. doi: 10.1016/S1474-4422(11)70243-5.
    1. Bain AR, Nybo L, Ainslie PN. Cerebral vascular control and metabolism in heat stress. Compr Physiol. 2015;5:1345–80. doi: 10.1002/cphy.c140066.
    1. Burkhart CS, Siegemund M, Steiner LA. Cerebral perfusion in sepsis. Crit Care. 2010;14:215. doi: 10.1186/cc8856.
    1. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Röther J. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;27:1231–4. doi: 10.1007/s001340101005.
    1. Pfister D, Siegemund M, Dell-Kuster S, Smielewski P, Rüegg S, Strebel SP, Marsch SCU, Pargger H, Steiner LA. Cerebral perfusion in sepsis-associated delirium. Crit Care. 2008;12:R63. doi: 10.1186/cc6891.
    1. Taccone FS, Castanares-Zapatero D, Peres-Bota D, Vincent J-L, Berre’ J, Melot C. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit Care. 2010;12:35–42. doi: 10.1007/s12028-009-9289-6.
    1. Berg RMG, Plovsing RR, Bailey DM, Holstein-Rathlou N-H, Møller K. The dynamic cerebral autoregulatory adaptive response to noradrenaline is attenuated during systemic inflammation in humans. Clin Exp Pharmacol Physiol. 2015;42:740–6. doi: 10.1111/1440-1681.12421.
    1. Di Giantomasso D, May CN, Bellomo R. Laboratory and animal investigations: vital organ blood flow during hyperdynamic sepsis. Chest. 2003;124:1053–9. doi: 10.1378/chest.124.3.1053.
    1. Matta BF, Stow PJ. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth. 1996;76:790–4. doi: 10.1093/bja/76.6.790.
    1. Brassard P, Kim Y-S, van Lieshout J, Secher NH, Rosenmeier JB. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension. Crit Care Med. 2012;40:1873–8. doi: 10.1097/CCM.0b013e3182474ca7.
    1. Berg RM, Plovsing RR, Evans KA, Christiansen CB, Bailey DM, Holstein-Rathlou N-H, Møller K. Lipopolysaccharide infusion enhances dynamic cerebral autoregulation without affecting cerebral oxygen vasoreactivity in healthy volunteers. Crit Care. 2013;17:R238. doi: 10.1186/cc13062.
    1. Helou S, Koehler RC, Gleason CA, Jones MD, Traystman RJ. Cerebrovascular autoregulation during fetal development in sheep. Am J Physiol. 1994;266(3 Pt 2):H1069–74.
    1. Muller T, Lohle M, Schubert H, Bauer R, Wicher C, Antonow-Schlorke I, Sliwka U, Nathanielsz PW, Schwab M. Developmental changes in cerebral autoregulatory capacity in the fetal sheep parietal cortex. J Physiol. 2002;539(Pt 3):957–67. doi: 10.1113/jphysiol.2001.012590.
    1. Lou HC, Lassen NA, Friis-Hansen B. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr. 1979;94:118–21. doi: 10.1016/S0022-3476(79)80373-X.
    1. Pryds O, Greisen G, Lou HC, Friis-Hansen B. Vasoparalysis associated with brain damage in asphyxiated term infants. J Pediatr. 1990;117(1 Pt 1):119–25. doi: 10.1016/S0022-3476(05)72459-8.
    1. Edwards AD, Wyatt JS, Richardson C, Delpy DT, Cope M, Reynolds EO. Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy. Lancet. 1988;2:770–1. doi: 10.1016/S0140-6736(88)92418-X.
    1. Müller AM, Morales C, Briner J, Baenziger O, Duc G, Bucher HU. Loss of CO2 reactivity of cerebral blood flow is associated with severe brain damage in mechanically ventilated very low birth weight infants. Eur J Paediatr Neurol. 1997;1:157–63.
    1. Greisen G. Autoregulation of cerebral blood flow in newborn babies. Early Hum Dev. 2005;81:423–8. doi: 10.1016/j.earlhumdev.2005.03.005.
    1. Rhee CJ, Fraser CD, III, Kibler K, Easley RB, Andropoulos DB, Czosnyka M, Varsos GV, Smielewski P, Rusin CG, Brady KM, Kaiser JR. The ontogeny of cerebrovascular pressure autoregulation in premature infants. J Perinatol. 2014;34:926–31. doi: 10.1038/jp.2014.122.
    1. Tyszczuk L, Meek J, Elwell C, Wyatt JS. Cerebral blood flow is independent of mean arterial blood pressure in preterm infants undergoing intensive care. Pediatrics. 1998;102(2 Pt 1):337–41. doi: 10.1542/peds.102.2.337.
    1. Boylan G, Young K, Panerai R, Rennie J, Evans D. Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res. 2000;48:1–8. doi: 10.1203/00006450-200007000-00005.
    1. da Costa CS, Czosnyka M, Smielewski P, Mitra S, Stevenson GN, Austin T. Monitoring of cerebrovascular reactivity for determination of optimal blood pressure in preterm infants. J Pediatr. 2015;167:86–91. doi: 10.1016/j.jpeds.2015.03.041.
    1. Tweed A, Cote J, Lou HC, Gregory G, Wade J. Impairment of cerebral blood flow autoregulation in the newborn lamb by hypoxia. Pediatr Res. 1986;20:516–9. doi: 10.1203/00006450-198606000-00007.
    1. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, Murray GD, Marmarou A, Roberts I, Habbema JDF, Maas AIR. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5:e165. doi: 10.1371/journal.pmed.0050165.
    1. Lazaridis C, DeSantis SM, Smielewski P, Menon DK, Hutchinson P, Pickard JD, Czosnyka M. Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. J Neurosurg. 2014;120:893–900. doi: 10.3171/2014.1.JNS131292.
    1. Ono M, Arnaoutakis GJ, Fine DM, Brady K, Easley RB, Zheng Y, Brown C, Katz NM, Grams ME, Hogue CW. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury. Crit Care Med. 2013;41:464–71. doi: 10.1097/CCM.0b013e31826ab3a1.
    1. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke. 2010;41:1951–6. doi: 10.1161/STROKEAHA.109.575159.
    1. Donnelly J, Czosnyka M, Sudhan N, Varsos GV, Nasr N, Jalloh I, Liu X, Dias C, Sekhon MS, Carpenter KLH, Menon DK, Hutchinson PJ, Smielewski P. Increased blood glucose is related to disturbed cerebrovascular pressure reactivity after traumatic brain injury. Neurocrit Care. 2014;22:20–5. doi: 10.1007/s12028-014-0042-4.
    1. Dias C, Gaio AR, Monteiro E, Barbosa S, Cerejo A, Donnelly J, Felgueiras Ó, Smielewski P, Paiva J-A, Czosnyka M. Kidney-brain link in traumatic brain injury patients? A preliminary report. Neurocrit Care. 2015;22:192–201. doi: 10.1007/s12028-014-0045-1.
    1. Lavinio A, Timofeev I, Nortje J, Outtrim J, Smielewski P, Gupta A, Hutchinson PJ, Matta BF, Pickard JD, Menon D, Czosnyka M. Cerebrovascular reactivity during hypothermia and rewarming. Br J Anaesth. 2007;99:237–44. doi: 10.1093/bja/aem118.
    1. Sekhon MS, Griesdale DE, Czosnyka M, Donnelly J, Liu X, Aries MJ, Robba C, Lavinio A, Menon DK, Smielewski P, Gupta AK. The effect of red blood cell transfusion on cerebral autoregulation in patients with severe traumatic brain injury. Neurocrit Care. 2015;23:210–6. doi: 10.1007/s12028-015-0141-x.
    1. Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Böesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O’Phelan K, Provencio JJ, et al. Consensus Summary Statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care. Neurocrit Care 2014;21:1189–1209.
    1. Thomas KN, Lewis NCS, Hill BG, Ainslie PN. Technical recommendations for the use of carotid duplex ultrasound for the assessment of extracranial blood flow. Am J Physiol Regul Integr Comp Physiol. 2015;309:R707–20. doi: 10.1152/ajpregu.00211.2015.
    1. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol. 2003;76:220–31. doi: 10.1259/bjr/13564625.
    1. Nasrallah I, Dubroff J. An overview of PET neuroimaging. Semin Nucl Med. 2013;43:449–61. doi: 10.1053/j.semnuclmed.2013.06.003.
    1. Jahng G, Li K, Ostergaard L, Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol. 2014;15:554–77. doi: 10.3348/kjr.2014.15.5.554.
    1. Kaloostian P, Robertson C, Gopinath SP, Stippler M, King CC, Qualls C, Yonas H, Nemoto EM. Outcome prediction within twelve hours after severe traumatic brain injury by quantitative cerebral blood flow. J Neurotrauma. 2012;29:727–34. doi: 10.1089/neu.2011.2147.
    1. Kelly DF, Martin NA, Kordestani R, Counelis G, Hovda DA, Bergsneider M, McBride DQ, Shalmon E, Herman D, Becker DP. Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg. 1997;86:633–41. doi: 10.3171/jns.1997.86.4.0633.
    1. Engelborghs K, Haseldonckx M, Van Reempts J, Van Rossem K, Wouters L, Borgers M, Verlooy J. Impaired autoregulation of cerebral blood flow in an experimental model of traumatic brain injury. J Neurotrauma. 2000;17:667–77. doi: 10.1089/089771500415418.
    1. Golding EM, Robertson CS, Bryan RM. L-arginine partially restores the diminished CO2 reactivity after mild controlled cortical impact injury in the adult rat. J Cereb Blood Flow Metab. 2000;20:820–8. doi: 10.1097/00004647-200005000-00008.
    1. Lee JH, Kelly DF, Oertel M, McArthur DL, Glenn TC, Vespa P, Boscardin WJ, Martin NA. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J Neurosurg. 2001;95:222–32. doi: 10.3171/jns.2001.95.2.0222.
    1. Budohoski KP, Czosnyka M, Smielewski P, Varsos GV, Kasprowicz M, Brady KM, Pickard JD, Kirkpatrick PJ. Cerebral autoregulation after subarachnoid hemorrhage: comparison of three methods. J Cereb Blood Flow Metab. 2013;33:449–56. doi: 10.1038/jcbfm.2012.189.
    1. Frontera JA, Rundek T, Schmidt JM, Claassen J, Parra A, Wartenberg KE, Temes RE, Mayer SA, Mohr JP, Marshall RS. Cerebrovascular reactivity and vasospasm after subarachnoid hemorrhage: a pilot study. Neurology. 2006;66:727–9. doi: 10.1212/01.wnl.0000200777.96896.3d.
    1. Wintermark M, Flanders AE, Velthuis B, Meuli R, van Leeuwen M, Goldsher D, Pineda C, Serena J, Vd SI, Waaijer A, Anderson J, Nesbit G, Gabriely I, Medina V, Quiles A, Pohlman S, Quist M, Schnyder P, Bogousslavsky J, Dillon WP, Pedraza S. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. Stroke. 2006;37:979–85. doi: 10.1161/01.STR.0000209238.61459.39.
    1. Greisen G. Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr Scand. 1986;75:43–51. doi: 10.1111/j.1651-2227.1986.tb10155.x.
    1. Mitra S, Czosnyka M, Smielewski P, O’Reilly H, Brady K, Austin T. Heart rate passivity of cerebral tissue oxygenation is associated with predictors of poor outcome in preterm infants. Acta Paediatr. 2014;103:e374–82. doi: 10.1111/apa.12696.
    1. Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic cerebral autoregulation measurements. Stroke. 1995;26:1014–9. doi: 10.1161/01.STR.26.6.1014.

Source: PubMed

3
Subscribe