The Use of Antimalarial Drugs against Viral Infection

Sarah D'Alessandro, Diletta Scaccabarozzi, Lucia Signorini, Federica Perego, Denise P Ilboudo, Pasquale Ferrante, Serena Delbue, Sarah D'Alessandro, Diletta Scaccabarozzi, Lucia Signorini, Federica Perego, Denise P Ilboudo, Pasquale Ferrante, Serena Delbue

Abstract

In recent decades, drugs used to treat malaria infection have been shown to be beneficial for many other diseases, including viral infections. In particular, they have received special attention due to the lack of effective antiviral drugs against new emerging viruses (i.e., HIV, dengue virus, chikungunya virus, Ebola virus, etc.) or against classic infections due to drug-resistant viral strains (i.e., human cytomegalovirus). Here, we reviewed the in vitro/in vivo and clinical studies conducted to evaluate the antiviral activities of four classes of antimalarial drugs: Artemisinin derivatives, aryl-aminoalcohols, aminoquinolines, and antimicrobial drugs.

Keywords: antimalarial drugs; emerging infections; viruses.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structures of the compounds described in the text.

References

    1. World Health Organization . Guidelines for the Treatment of Malaria. World Health Organization; Geneva, Switzerland: 2015.
    1. Haładyj E., Sikora M., Felis-Giemza A., Olesińska M. Antimalarials—Are they effective and safe in rheumatic diseases? Reumatologia. 2018;56:164–173. doi: 10.5114/reum.2018.76904.
    1. Das A.K. Anticancer Effect of AntiMalarial Artemisinin Compounds. Ann. Med. Health Sci. Res. 2015;5:93–102. doi: 10.4103/2141-9248.153609.
    1. Wolf R., Tufano M.A., Ruocco V., Grimaldi E., Ruocco E., Donnarumma G., Baroni A. Quinine sulfate inhibits invasion of some bacterial skin pathogens. Int. J. Dermatol. 2006;45:661–663. doi: 10.1111/j.1365-4632.2006.02696.x.
    1. Gwitira I., Murwira A., Mberikunashe J., Masocha M. Spatial overlaps in the distribution of HIV/AIDS and malaria in Zimbabwe. BMC Infect. Dis. 2018;18:598. doi: 10.1186/s12879-018-3513-y.
    1. Santana V.O.S., Lavezzo L.C., Mondini A., Terzian A.C., Bronzoni R.V., Rossit A.R., Machado R.L., Rahal P., Nogueira M.C., Nogueira M.L. Concurrent Dengue and malaria in the Amazon region. Rev. Soc. Bras. Med. Trop. 2010;43:508–511. doi: 10.1590/S0037-86822010000500007.
    1. Salam N., Mustafa S., Hafiz A., Chaudhary A.A., Deeba F., Parveen S. Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: A systematic review. BMC Public Health. 2018;18:710. doi: 10.1186/s12889-018-5626-z.
    1. Tu Y. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture) Angew. Chem. Int. Ed. Engl. 2016;55:10210–10226. doi: 10.1002/anie.201601967.
    1. Efferth T. Willmar Schwabe Award 2006: Antiplasmodial and antitumor activity of artemisinin—From bench to bedside. Planta Med. 2007;73:299–309. doi: 10.1055/s-2007-967138.
    1. Efferth T., Marschall M., Wang X., Huong S.M., Hauber I., Olbrich A., Kronschnabl M., Stamminger T., Huang E.S. Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses. J. Mol. Med. 2002;80:233–242. doi: 10.1007/s00109-001-0300-8.
    1. Kaptein S.J., Efferth T., Leis M., Rechter S., Auerochs S., Kalmer M., Bruggeman C.A., Vink C., Stamminger T., Marschall M. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antivir. Res. 2006;69:60–69. doi: 10.1016/j.antiviral.2005.10.003.
    1. Shapira M.Y., Resnick I.B., Chou S., Neumann A.U., Lurain N.S., Stamminger T., Caplan O., Saleh N., Efferth T., Marschall M., et al. Artesunate as a potent antiviral agent in a patient with late drug-resistant cytomegalovirus infection after hematopoietic stem cell transplantation. Clin. Infect. Dis. 2008;46:1455–1457. doi: 10.1086/587106.
    1. Wolf D.G., Shimoni A., Resnick I.B., Stamminger T., Neumann A.U., Chou S., Efferth T., Caplan O., Rose J., Nagler A., et al. Human cytomegalovirus kinetics following institution of artesunate after hematopoietic stem cell transplantation. Antivir. Res. 2011;90:183–186. doi: 10.1016/j.antiviral.2011.03.184.
    1. Efferth T., Romero M.R., Wolf D.G., Stamminger T., Marin J.J., Marschall M. The antiviral activities of artemisinin and artesunate. Clin. Infect. Dis. 2008;47:804–811. doi: 10.1086/591195.
    1. Efferth T. Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnol. Adv. 2018;36:1730–1737. doi: 10.1016/j.biotechadv.2018.01.001.
    1. Flobinus A., Taudon N., Desbordes M., Labrosse B., Simon F., Mazeron M.C., Schnepf N. Stability and antiviral activity against human cytomegalovirus of artemisinin derivatives. J. Antimicrob. Chemother. 2014;69:34–40. doi: 10.1093/jac/dkt346.
    1. Romero M.R., Efferth T., Serrano M.A., Castaño B., Macias R.I., Briz O., Marin J.J. Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system. Antivir. Res. 2005;68:75–83. doi: 10.1016/j.antiviral.2005.07.005.
    1. Mondal A., Chatterji U. Artemisinin Represses Telomerase Subunits and Induces Apoptosis in HPV-39 Infected Human Cervical Cancer Cells. J. Cell. Biochem. 2015;116:1968–1981. doi: 10.1002/jcb.25152.
    1. Disbrow G.L., Baege A.C., Kierpiec K.A., Yuan H., Centeno J.A., Thibodeaux C.A., Hartmann D., Schlegel R. Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo. Cancer Res. 2005;65:10854–10861. doi: 10.1158/0008-5472.CAN-05-1216.
    1. Obeid S., Alen J., Nguyen V.H., Pham V.C., Meuleman P., Pannecouque C., Le T.N., Neyts J., Dehaen W., Paeshuyse J. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS ONE. 2013;8:e81783. doi: 10.1371/journal.pone.0081783.
    1. Paeshuyse J., Coelmont L., Vliegen I., Van hemel J., Vandenkerckhove J., Peys E., Sas B., De Clercq E., Neyts J. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochem. Biophys. Res. Commun. 2006;348:139–144. doi: 10.1016/j.bbrc.2006.07.014.
    1. Fillebeen C., Rivas-Estilla A.M., Bisaillon M., Ponka P., Muckenthaler M., Hentze M.W., Koromilas A.E., Pantopoulos K. Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C Virus. J. Biol. Chem. 2005;280:9049–9057. doi: 10.1074/jbc.M412687200.
    1. Oguariri R.M., Adelsberger J.W., Baseler M.W., Imamichi T. Evaluation of the effect of pyrimethamine, an anti-malarial drug, on HIV-1 replication. Virus Res. 2010;153:269–276. doi: 10.1016/j.virusres.2010.08.018.
    1. Zeng A.H., Ou Y.Y., Guo M.M., Dai X., Zhou D.Z., Chen R. Human embryonic lung fibroblasts treated with artesunate exhibit reduced rates of proliferation and human cytomegalovirus infection in vitro. J. Thorac. Dis. 2015;7:1151–1157. doi: 10.3978/j.issn.2072-1439.2015.07.05.
    1. Schnepf N., Corvo J., Pors M.J., Mazeron M.C. Antiviral activity of ganciclovir and artesunate towards human cytomegalovirus in astrocytoma cells. Antivir. Res. 2011;89:186–188. doi: 10.1016/j.antiviral.2010.12.002.
    1. He R., Forman M., Mott B.T., Venkatadri R., Posner G.H., Arav-Boger R. Unique and highly selective anticytomegalovirus activities of artemisinin-derived dimer diphenyl phosphate stem from combination of dimer unit and a diphenyl phosphate moiety. Antimicrob. Agents Chemother. 2013;57:4208–4214. doi: 10.1128/AAC.00893-13.
    1. Chou S., Marousek G., Auerochs S., Stamminger T., Milbradt J., Marschall M. The unique antiviral activity of artesunate is broadly effective against human cytomegaloviruses including therapy-resistant mutants. Antivir. Res. 2011;92:364–368. doi: 10.1016/j.antiviral.2011.07.018.
    1. Reiter C., Fröhlich T., Zeino M., Marschall M., Bahsi H., Leidenberger M., Friedrich O., Kappes B., Hampel F., Efferth T., et al. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids. Eur. J. Med. Chem. 2015;97:164–172. doi: 10.1016/j.ejmech.2015.04.053.
    1. Hutterer C., Niemann I., Milbradt J., Fröhlich T., Reiter C., Kadioglu O., Bahsi H., Zeitträger I., Wagner S., Einsiedel J., et al. The broad-spectrum antiinfective drug artesunate interferes with the canonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65. Antivir. Res. 2015;124:101–109. doi: 10.1016/j.antiviral.2015.10.003.
    1. He R., Mott B.T., Rosenthal A.S., Genna D.T., Posner G.H., Arav-Boger R. An artemisinin-derived dimer has highly potent anti-cytomegalovirus (CMV) and anti-cancer activities. PLoS ONE. 2011;6:e24334. doi: 10.1371/journal.pone.0024334.
    1. Reiter C., Fröhlich T., Gruber L., Hutterer C., Marschall M., Voigtländer C., Friedrich O., Kappes B., Efferth T., Tsogoeva S.B. Highly potent artemisinin-derived dimers and trimers: Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities. Bioorg. Med. Chem. 2015;23:5452–5458. doi: 10.1016/j.bmc.2015.07.048.
    1. Morère L., Andouard D., Labrousse F., Saade F., Calliste C.A., Cotin S., Aubard Y., Rawlinson W.D., Esclaire F., Hantz S., et al. Ex vivo model of congenital cytomegalovirus infection and new combination therapies. Placenta. 2015;36:41–47. doi: 10.1016/j.placenta.2014.11.003.
    1. Drouot E., Piret J., Boivin G. Artesunate demonstrates in vitro synergism with several antiviral agents against human cytomegalovirus. Antivir. Ther. 2016;21:535–539. doi: 10.3851/IMP3028.
    1. Cai H., Kapoor A., He R., Venkatadri R., Forman M., Posner G.H., Arav-Boger R. In vitro combination of anti-cytomegalovirus compounds acting through different targets: Role of the slope parameter and insights into mechanisms of Action. Antimicrob. Agents Chemother. 2014;58:986–994. doi: 10.1128/AAC.01972-13.
    1. Canivet C., Menasria R., Rhéaume C., Piret J., Boivin G. Valacyclovir combined with artesunate or rapamycin improves the outcome of herpes simplex virus encephalitis in mice compared to antiviral therapy alone. Antivir. Res. 2015;123:105–113. doi: 10.1016/j.antiviral.2015.09.007.
    1. Borges M.C., Castro L.A., Fonseca B.A. Chloroquine use improves dengue-related symptoms. Mem. Inst. Oswaldo. Cruz. 2013;108:596–599. doi: 10.1590/S0074-02762013000500010.
    1. De Lamballerie X., Boisson V., Reynier J.C., Enault S., Charrel R.N., Flahault A., Roques P., Le Grand R. On chikungunya acute infection and chloroquine treatment. Vector Borne Zoonotic Dis. 2008;8:837–839. doi: 10.1089/vbz.2008.0049.
    1. Paton N.I., Lee L., Xu Y., Ooi E.E., Cheung Y.B., Archuleta S., Wong G., Wilder-Smith A., Smith A.W. Chloroquine for influenza prevention: A randomised, double-blind, placebo controlled trial. Lancet Infect. Dis. 2011;11:677–683. doi: 10.1016/S1473-3099(11)70065-2.
    1. Sperber K., Louie M., Kraus T., Proner J., Sapira E., Lin S., Stecher V., Mayer L. Hydroxychloroquine treatment of patients with human immunodeficiency virus type 1. Clin. Ther. 1995;17:622–636. doi: 10.1016/0149-2918(95)80039-5.
    1. Sperber K., Chiang G., Chen H., Ross W., Chusid E., Gonchar M., Chow R., Liriano O. Comparison of hydroxychloroquine with zidovudine in asymptomatic patients infected with human immunodeficiency virus type 1. Clin. Ther. 1997;19:913–923. doi: 10.1016/S0149-2918(97)80045-8.
    1. Paton N.I., Goodall R.L., Dunn D.T., Franzen S., Collaco-Moraes Y., Gazzard B.G., Williams I.G., Fisher M.J., Winston A., Fox J., et al. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: A randomized controlled trial. JAMA. 2012;308:353–361. doi: 10.1001/jama.2012.6936.
    1. Jacobson J.M., Bosinger S.E., Kang M., Belaunzaran-Zamudio P., Matining R.M., Wilson C.C., Flexner C., Clagett B., Plants J., Read S., et al. The Effect of Chloroquine on Immune Activation and Interferon Signatures Associated with HIV-1. AIDS Res. Hum. Retrovir. 2016;32:636–647. doi: 10.1089/aid.2015.0336.
    1. Murray S.M., Down C.M., Boulware D.R., Stauffer W.M., Cavert W.P., Schacker T.W., Brenchley J.M., Douek D.C. Reduction of immune activation with chloroquine therapy during chronic HIV infection. J. Virol. 2010;84:12082–12086. doi: 10.1128/JVI.01466-10.
    1. Routy J.P., Angel J.B., Patel M., Kanagaratham C., Radzioch D., Kema I., Gilmore N., Ancuta P., Singer J., Jenabian M.A. Assessment of chloroquine as a modulator of immune activation to improve CD4 recovery in immune nonresponding HIV-infected patients receiving antiretroviral therapy. HIV Med. 2015;16:48–56. doi: 10.1111/hiv.12171.
    1. Laurens M.B., Mungwira R.G., Nyirenda O.M., Divala T.H., Kanjala M., Muwalo F., Mkandawire F.A., Tsirizani L., Nyangulu W., Mwinjiwa E., et al. TSCQ study: A randomized, controlled, open-label trial of daily trimethoprim-sulfamethoxazole or weekly chloroquine among adults on antiretroviral therapy in Malawi: Study protocol for a randomized controlled trial. Trials. 2016;17:322. doi: 10.1186/s13063-016-1392-3.
    1. Lau P.K., Woods M.L., Ratanjee S.K., John G.T. Artesunate is ineffective in controlling valganciclovir-resistant cytomegalovirus infection. Clin. Infect. Dis. 2011;52:279. doi: 10.1093/cid/ciq050.
    1. Stuehler C., Stüssi G., Halter J., Nowakowska J., Schibli A., Battegay M., Dirks J., Passweg J., Heim D., Rovo A., et al. Combination therapy for multidrug-resistant cytomegalovirus disease. Transpl. Infect. Dis. 2015;17:751–755. doi: 10.1111/tid.12435.
    1. Germi R., Mariette C., Alain S., Lupo J., Thiebaut A., Brion J.P., Epaulard O., Saint Raymond C., Malvezzi P., Morand P. Success and failure of artesunate treatment in five transplant recipients with disease caused by drug-resistant cytomegalovirus. Antivir. Res. 2014;101:57–61. doi: 10.1016/j.antiviral.2013.10.014.
    1. Gantt S., Huang M.L., Magaret A., Bunts L., Selke S., Wald A., Rosenthal P.J., Dorsey G., Casper C. An artesunate-containing antimalarial treatment regimen did not suppress cytomegalovirus viremia. J. Clin. Virol. 2013;58:276–278. doi: 10.1016/j.jcv.2013.06.008.
    1. Auerochs S., Korn K., Marschall M. A reporter system for Epstein-Barr virus (EBV) lytic replication: Anti-EBV activity of the broad anti-herpesviral drug artesunate. J. Virol. Methods. 2011;173:334–339. doi: 10.1016/j.jviromet.2011.03.005.
    1. Milbradt J., Auerochs S., Korn K., Marschall M. Sensitivity of human herpesvirus 6 and other human herpesviruses to the broad-spectrum antiinfective drug artesunate. J. Clin. Virol. 2009;46:24–28. doi: 10.1016/j.jcv.2009.05.017.
    1. Hakacova N., Klingel K., Kandolf R., Engdahl E., Fogdell-Hahn A., Higgins T. First therapeutic use of Artesunate in treatment of human herpesvirus 6B myocarditis in a child. J. Clin. Virol. 2013;57:157–160. doi: 10.1016/j.jcv.2013.02.005.
    1. Naesens L., Bonnafous P., Agut H., De Clercq E. Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts. J. Clin. Virol. 2006;37(Suppl. S1):S69–S75. doi: 10.1016/S1386-6532(06)70015-4.
    1. Sharma B.N., Marschall M., Rinaldo C.H. Antiviral effects of artesunate on JC polyomavirus replication in COS-7 cells. Antimicrob. Agents Chemother. 2014;58:6724–6734. doi: 10.1128/AAC.03714-14.
    1. Sharma B.N., Marschall M., Henriksen S., Rinaldo C.H. Antiviral effects of artesunate on polyomavirus BK replication in primary human kidney cells. Antimicrob. Agents Chemother. 2014;58:279–289. doi: 10.1128/AAC.01800-13.
    1. Cook L. Polyomaviruses. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.DMIH2-0010-2015.
    1. Dai R., Xiao X., Peng F., Li M., Gong G. Artesunate, an anti-malarial drug, has a potential to inhibit HCV replication. Virus Genes. 2016;52:22–28. doi: 10.1007/s11262-015-1285-7.
    1. Gignoux E., Azman A.S., de Smet M., Azuma P., Massaquoi M., Job D., Tiffany A., Petrucci R., Sterk E., Potet J., et al. Effect of Artesunate-Amodiaquine on Mortality Related to Ebola Virus Disease. N. Engl. J. Med. 2016;374:23–32. doi: 10.1056/NEJMoa1504605.
    1. Lee J.S., Adhikari N.K.J., Kwon H.Y., Teo K., Siemieniuk R., Lamontagne F., Chan A., Mishra S., Murthy S., Kiiza P., et al. Anti-Ebola therapy for patients with Ebola virus disease: A systematic review. BMC Infect. Dis. 2019;19:376. doi: 10.1186/s12879-019-3980-9.
    1. Garbern S.C., Yam D., Aluisio A.R., Cho D.K., Kennedy S.B., Massaquoi M., Sahr F., Perera S.M., Levine A.C., Liu T. Effect of Mass Artesunate-Amodiaquine Distribution on Mortality of Patients With Ebola Virus Disease During West African Outbreak. Open Forum Infect. Dis. 2019;6:ofz250. doi: 10.1093/ofid/ofz250.
    1. Arav-Boger R., He R., Chiou C.J., Liu J., Woodard L., Rosenthal A., Jones-Brando L., Forman M., Posner G. Artemisinin-derived dimers have greatly improved anti-cytomegalovirus activity compared to artemisinin monomers. PLoS ONE. 2010;5:e10370. doi: 10.1371/journal.pone.0010370.
    1. Mott B.T., He R., Chen X., Fox J.M., Civin C.I., Arav-Boger R., Posner G.H. Artemisinin-derived dimer phosphate esters as potent anti-cytomegalovirus (anti-CMV) and anti-cancer agents: A structure-activity study. Bioorg. Med. Chem. 2013;21:3702–3707. doi: 10.1016/j.bmc.2013.04.027.
    1. Blazquez A.G., Fernandez-Dolon M., Sanchez-Vicente L., Maestre A.D., Gomez-San Miguel A.B., Alvarez M., Serrano M.A., Jansen H., Efferth T., Marin J.J., et al. Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg. Med. Chem. 2013;21:4432–4441. doi: 10.1016/j.bmc.2013.04.059.
    1. Barger-Kamate B., Forman M., Sangare C.O., Haidara A.S., Maiga H., Vaidya D., Djimde A., Arav-Boger R. Effect of artemether-lumefantrine (Coartem) on cytomegalovirus urine viral load during and following treatment for malaria in children. J. Clin. Virol. 2016;77:40–45. doi: 10.1016/j.jcv.2016.02.006.
    1. Achan J., Talisuna A.O., Erhart A., Yeka A., Tibenderana J.K., Baliraine F.N., Rosenthal P.J., D’Alessandro U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011;10:144. doi: 10.1186/1475-2875-10-144.
    1. Malakar S., Sreelatha L., Dechtawewat T., Noisakran S., Yenchitsomanus P.T., Chu J.J.H., Limjindaporn T. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res. 2018;255:171–178. doi: 10.1016/j.virusres.2018.07.018.
    1. Seeler A.O., Graessle O., Ott W.H. Effect of quinine on influenza virus infections in mice. J. Infect. Dis. 1946;79:156–158. doi: 10.1093/infdis/79.2.156.
    1. Wolf R., Baroni A., Greco R., Corrado F., Ruocco E., Tufano M.A., Ruocco V. Quinine sulfate and HSV replication. Dermatol. Online J. 2003;9:3.
    1. Baroni A., Paoletti I., Ruocco E., Ayala F., Corrado F., Wolf R., Tufano M.A., Donnarumma G. Antiviral effects of quinine sulfate on HSV-1 HaCat cells infected: Analysis of the molecular mechanisms involved. J. Dermatol. Sci. 2007;47:253–255. doi: 10.1016/j.jdermsci.2007.05.009.
    1. Marois I., Cloutier A., Meunier I., Weingartl H.M., Cantin A.M., Richter M.V. Inhibition of influenza virus replication by targeting broad host cell pathways. PLoS ONE. 2014;9:e110631. doi: 10.1371/journal.pone.0110631.
    1. Brickelmaier M., Lugovskoy A., Kartikeyan R., Reviriego-Mendoza M.M., Allaire N., Simon K., Frisque R.J., Gorelik L. Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob. Agents Chemother. 2009;53:1840–1849. doi: 10.1128/AAC.01614-08.
    1. Kishida S., Tanaka K. Mefloquine treatment in a patient suffering from progressive multifocal leukoencephalopathy after umbilical cord blood transplant. Intern. Med. 2010;49:2509–2513. doi: 10.2169/internalmedicine.49.3227.
    1. Gofton T.E., Al-Khotani A., O’Farrell B., Ang L.C., McLachlan R.S. Mefloquine in the treatment of progressive multifocal leukoencephalopathy. J. Neurol. Neurosurg. Psychiatry. 2011;82:452–455. doi: 10.1136/jnnp.2009.190652.
    1. Beppu M., Kawamoto M., Nukuzuma S., Kohara N. Mefloquine improved progressive multifocal leukoencephalopathy in a patient with systemic lupus erythematosus. Intern. Med. 2012;51:1245–1247. doi: 10.2169/internalmedicine.51.6810.
    1. Kobayashi Z., Akaza M., Numasawa Y., Ishihara S., Tomimitsu H., Nakamichi K., Saijo M., Morio T., Shimizu N., Sanjo N., et al. Failure of mefloquine therapy in progressive multifocal leukoencephalopathy: Report of two Japanese patients without human immunodeficiency virus infection. J. Neurol. Sci. 2013;324:190–194. doi: 10.1016/j.jns.2012.11.004.
    1. Ramadhani P., Bramantono B., Sedana M.P. A Chronic Lymphocytic Leukemia Patient with Progressive Multifocal Leukoencephalopathy Caused by John Cunningham Virus. Acta Med. Indones. 2018;50:151–158.
    1. Nishiyama S., Misu T., Shishido-Hara Y., Nakamichi K., Saijo M., Takai Y., Takei K., Yamamoto N., Kuroda H., Saito R., et al. Fingolimod-associated PML with mild IRIS in MS: A clinicopathologic study. Neurol. Neuroimmunol. NeuroInflamm. 2018;5:e415. doi: 10.1212/NXI.0000000000000415.
    1. Ishii J., Shishido-Hara Y., Kawamoto M., Fujiwara S., Imai Y., Nakamichi K., Kohara N. A Punctate Magnetic Resonance Imaging Pattern in a Patient with Systemic Lupus Erythematosus Is an Early Sign of Progressive Multifocal Leukoencephalopathy: A Clinicopathological Study. Intern. Med. 2018;57:2727–2734. doi: 10.2169/internalmedicine.0696-17.
    1. Dubey D., Zhang Y., Graves D., DeSena A.D., Frohman E., Greenberg B. Use of interleukin-2 for management of natalizumab-associated progressive multifocal leukoencephalopathy: Case report and review of literature. Ther. Adv. Neurol. Disord. 2016;9:211–215. doi: 10.1177/1756285615621029.
    1. Sano Y., Nakano Y., Omoto M., Takao M., Ikeda E., Oga A., Nakamichi K., Saijo M., Maoka T., Sano H., et al. Rituximab-associated progressive multifocal leukoencephalopathy derived from non-Hodgkin lymphoma: Neuropathological findings and results of mefloquine treatment. Intern. Med. 2015;54:965–970. doi: 10.2169/internalmedicine.54.2308.
    1. Garrote H., de la Fuente A., Oña R., Rodríguez I., Echevarría J.E., Sepúlveda J.M., García J.F. Long-term survival in a patient with progressive multifocal leukoencephalopathy after therapy with rituximab, fludarabine and cyclophosphamide for chronic lymphocytic leukemia. Exp. Hematol. Oncol. 2015;4:8. doi: 10.1186/s40164-015-0003-4.
    1. Yoshida T., Kawamoto M., Togo M., Kohara N., Ito T., Nakamichi K., Saijo M., Mizuno T. Progressive multifocal leukoencephalopathy developing after liver transplantation showing marked neurological symptom improvement and arrest of further deterioration of imaging findings: A case report. J. Neurol. Sci. 2015;359:1–3. doi: 10.1016/j.jns.2015.10.028.
    1. Hirayama M., Nosaki Y., Matsui K., Terao S., Kuwayama M., Tateyama H., Yoshida M., Hashizume Y. Efficacy of mefloquine to progressive multifocal leukoencephalopathy initially presented with parkinsonism. Clin. Neurol. Neurosurg. 2012;114:728–731. doi: 10.1016/j.clineuro.2011.12.010.
    1. Shin J.W., Jung K.H., Lee S.T., Moon J., Lim J.A., Byun J.I., Park K.I., Lee S.K., Chu K. Mefloquine improved progressive multifocal leukoencephalopathy in a patient with immunoglobulin A nephropathy. J. Clin. Neurosci. 2014;21:1661–1664. doi: 10.1016/j.jocn.2013.12.031.
    1. Gourineni V.C., Juvet T., Kumar Y., Bordea D., Sena K.N. Progressive multifocal leukoencephalopathy in a 62-year-old immunocompetent woman. Case Rep. Neurol. Med. 2014;2014:549271. doi: 10.1155/2014/549271.
    1. Shirai S., Yabe I., Kano T., Shimizu Y., Sasamori T., Sato K., Hirotani M., Nonaka T., Takahashi I., Matsushima M., et al. Usefulness of 11C-methionine-positron emission tomography for the diagnosis of progressive multifocal leukoencephalopathy. J. Neurol. 2014;261:2314–2318. doi: 10.1007/s00415-014-7500-y.
    1. Mitsikostas D.D., Mastorodemos V., Tsagournizakis M., Kodounis A., Tsagkaropoulos A., Konitsiotis S., Toulas P., Papadimitriou A., Papadimitriou D., Tavernarakis A., et al. Natalizumab-related progressive multifocal leukoencephalopathy in Greece. Mult. Scler. Relat. Disord. 2014;3:203–210. doi: 10.1016/j.msard.2013.08.006.
    1. Sanchez-Quintana A., Breña-Atienza J., Marrero-Santos C., Alvarez-Acosta L. Late relapse of progressive multifocal leucoencephalopathy postallogenic transplant in a young patient with CLL. BMJ Case Rep. 2013;2013 doi: 10.1136/bcr-2013-200213.
    1. Schröder A., Lee D.H., Hellwig K., Lukas C., Linker R.A., Gold R. Successful management of natalizumab-associated progressive multifocal leukoencephalopathy and immune reconstitution syndrome in a patient with multiple sclerosis. Arch. Neurol. 2010;67:1391–1394. doi: 10.1001/archneurol.2010.157.
    1. McGuire J.L., Fridman V., Wüthrich C., Koralnik I.J., Jacobs D. Progressive multifocal leukoencephalopathy associated with isolated CD8+ T-lymphocyte deficiency mimicking tumefactive MS. J. Neurovirol. 2011;17:500–503. doi: 10.1007/s13365-011-0045-2.
    1. Pallin M., O’Sullivan C., Dodd J.D., McCreery K., Brett F., Farrell M., O’Brien D., Hall W.W., Tubridy N.J., Keane M.P. A case of progressive multifocal leukoencephalopathy in a patient with sarcoidosis. QJM. 2012;105:1011–1016. doi: 10.1093/qjmed/hcr154.
    1. Christakis P.G., Okin D., Huttner A.J., Baehring J.M. Progressive multifocal leukoencephalopathy in an immunocompetent patient. J. Neurol. Sci. 2013;326:107–110. doi: 10.1016/j.jns.2013.01.010.
    1. Lindå H., von Heijne A. Presymptomatic diagnosis with MRI and adequate treatment ameliorate the outcome after natalizumab-associated progressive multifocal leukoencephalopathy. Front. Neurol. 2013;4:11. doi: 10.3389/fneur.2013.00011.
    1. Epperla N., Medina-Flores R., Mazza J.J., Yale S.H. Mirtazapine and mefloquine therapy for non-AIDS-related progressive multifocal leukoencephalopathy. WMJ. 2014;113:242–245.
    1. Kurmann R., Weisstanner C., Kardas P., Hirsch H.H., Wiest R., Lämmle B., Furrer H., Du Pasquier R., Bassetti C.L., Sturzenegger M., et al. Progressive multifocal leukoencephalopathy in common variable immunodeficiency: Mitigated course under mirtazapine and mefloquine. J. Neurovirol. 2015;21:694–701. doi: 10.1007/s13365-015-0340-4.
    1. Balak D.M.W., Hajdarbegovic E., Bramer W.M., Neumann H.A.M., Thio H.B. Progressive multifocal leukoencephalopathy associated with fumaric acid esters treatment in psoriasis patients. J. Eur. Acad. Dermatol. Venereol. 2017;31:1475–1482. doi: 10.1111/jdv.14236.
    1. Yoshida H., Ohshima K., Toda J., Kusakabe S., Masaie H., Yagi T., Ishikawa J. Significant improvement following combination treatment with mefloquine and mirtazapine in a patient with progressive multifocal leukoencephalopathy after allogeneic peripheral blood stem cell transplantation. Int. J. Hematol. 2014;99:95–99. doi: 10.1007/s12185-013-1471-0.
    1. Calic Z., Cappelen-Smith C., Hodgkinson S.J., McDougall A., Cuganesan R., Brew B.J. Treatment of progressive multifocal leukoencephalopathy-immune reconstitution inflammatory syndrome with intravenous immunoglobulin in a patient with multiple sclerosis treated with fingolimod after discontinuation of natalizumab. J. Clin. Neurosci. 2015;22:598–600. doi: 10.1016/j.jocn.2014.08.016.
    1. Silverio K.A., Patel S.A. Progressive Multifocal Leukoencephalopathy with Negative JC Virus PCR following Treatment of Follicular Lymphoma: Implications for Biologics in the Era of Targeted Cancer Therapy. Case Rep. Oncol. Med. 2015;2015:534529. doi: 10.1155/2015/534529.
    1. Fabis-Pedrini M.J., Xu W., Burton J., Carroll W.M., Kermode A.G. Asymptomatic progressive multifocal leukoencephalopathy during natalizumab therapy with treatment. J. Clin. Neurosci. 2016;25:145–147. doi: 10.1016/j.jocn.2015.08.027.
    1. Ikeda J., Matsushima A., Ishii W., Goto T., Takahashi K., Nakamichi K., Saijo M., Sekijima Y., Ikeda S.I. Brain Biopsy Is More Reliable than the DNA test for JC Virus in Cerebrospinal Fluid for the Diagnosis of Progressive Multifocal Leukoencephalopathy. Intern. Med. 2017;56:1231–1234. doi: 10.2169/internalmedicine.56.7689.
    1. Nambirajan A., Suri V., Kataria V., Sharma M.C., Goyal V. Progressive multifocal leukoencephalopathy in a 44-year old male with idiopathic CD4+ T-lymphocytopenia treated with mirtazapine and mefloquine. Neurol. India. 2017;65:1061–1064. doi: 10.4103/neuroindia.NI_535_16.
    1. Ishikawa Y., Kasuya T., Ishikawa J., Fujiwara M., Kita Y. A case of developing progressive multifocal leukoencephalopathy while using rituximab and mycophenolate mofetil in refractory systemic lupus erythematosus. Ther. Clin. Risk Manag. 2018;14:1149–1153. doi: 10.2147/TCRM.S167109.
    1. Ikeda K.M., Das S., Strong M., Mirsattari S.M., Leung A., Steven D., Hammond R. Diagnosis of Inclusion. Can. J. Neurol. Sci. 2015;42:138–143. doi: 10.1017/cjn.2015.2.
    1. Nishigori R., Warabi Y., Shishido-Hara Y., Nakamichi K., Nakata Y., Komori T., Isozaki E. Inflammatory Cerebellar PML with a CD4/CD8 ratio of 2.9 Showed a Favorable Prognosis in a Patient with Rheumatoid Arthritis: A Case Report. Intern. Med. 2019 doi: 10.2169/internalmedicine.3038-19.
    1. AlTahan A.M., Berger T., AlOrainy I.A., AlTahan H. Progressive Multifocal Leukoencephalopathy in the Absence of Typical Radiological Changes: Can We Make a Diagnosis? Am. J. Case Rep. 2019;20:101–105. doi: 10.12659/AJCR.911521.
    1. Harel A., Horng S., Gustafson T., Ramineni A., Farber R.S., Fabian M. Successful treatment of progressive multifocal leukoencephalopathy with recombinant interleukin-7 and maraviroc in a patient with idiopathic CD4 lymphocytopenia. J. Neurovirol. 2018;24:652–655. doi: 10.1007/s13365-018-0657-x.
    1. Zhang Y., Wright C., Flores A. Asymptomatic progressive multifocal leukoencephalopathy: A case report and review of the literature. J. Med. Case Rep. 2018;12:187. doi: 10.1186/s13256-018-1727-7.
    1. Soleimani-Meigooni D.N., Schwetye K.E., Angeles M.R., Ryschkewitsch C.F., Major E.O., Dang X., Koralnik I.J., Schmidt R.E., Clifford D.B., Kuhlmann F.M., et al. JC virus granule cell neuronopathy in the setting of chronic lymphopenia treated with recombinant interleukin-7. J. Neurovirol. 2017;23:141–146. doi: 10.1007/s13365-016-0465-0.
    1. Berntsson S.G., Katsarogiannis E., Lourenço F., Moraes-Fontes M.F. Progressive Multifocal Leukoencephalopathy and Systemic Lupus Erythematosus: Focus on Etiology. Case Rep. Neurol. 2016;8:59–65. doi: 10.1159/000444874.
    1. Di Pauli F., Berger T., Walder A., Maier H., Rhomberg P., Uprimny C., Steurer M., Stockhammer G. Progressive multifocal leukoencephalopathy complicating untreated chronic lymphatic leukemia: Case report and review of the literature. J. Clin. Virol. 2014;60:424–427. doi: 10.1016/j.jcv.2014.05.007.
    1. Ueno T., Sato N., Kon T., Haga R., Nunomura J.I., Nakamichi K., Saijo M., Tomiyama M. Progressive multifocal leukoencephalopathy associated with thymoma with immunodeficiency: A case report and literature review. BMC Neurol. 2018;18:37. doi: 10.1186/s12883-018-1041-4.
    1. Ikegawa S., Fujii N., Tadokoro K., Sato K., Iwamoto M., Matsuda M., Inomata T., Sugiura H., Asano T., Yoshida S., et al. Progressive multifocal leukoencephalopathy after T-cell replete HLA-haploidentical transplantation with post-transplantation cyclophosphamide graft-versus-host disease prophylaxis. Transpl. Infect. Dis. 2018;20:e12850. doi: 10.1111/tid.12850.
    1. Lutz M., Schulze A.B., Rebber E., Wiebe S., Zoubi T., Grauer O.M., Keßler T., Kerkhoff A., Lenz G., Berdel W.E. Progressive Multifocal Leukoencephalopathy after Ibrutinib Therapy for Chronic Lymphocytic Leukemia. Cancer Res. Treat. 2017;49:548–552. doi: 10.4143/crt.2016.110.
    1. Wüthrich C., Popescu B.F., Gheuens S., Marvi M., Ziman R., Denq S.P., Tham M., Norton E., Parisi J.E., Dang X., et al. Natalizumab-associated progressive multifocal leukoencephalopathy in a patient with multiple sclerosis: A postmortem study. J. Neuropathol. Exp. Neurol. 2013;72:1043–1051. doi: 10.1097/NEN.0000000000000005.
    1. Kalisch A., Wilhelm M., Erbguth F., Birkmann J. Progressive multifocal leukoencephalopathy in patients with a hematological malignancy: Review of therapeutic options. Chemotherapy. 2014;60:47–53. doi: 10.1159/000368072.
    1. Meister S., Benecke R., König F.B., Großmann A., Zettl U.K., Winkelmann A. Progressive multifocal leukoencephalopathy in a patient with pre-clinical primary biliary cirrhosis. Clin. Neurol. Neurosurg. 2014;123:45–49. doi: 10.1016/j.clineuro.2014.04.032.
    1. Motte J., Kneiphof J., Straßburger-Krogias K., Klasing A., Adams O., Haghikia A., Gold R. Detection of JC virus archetype in cerebrospinal fluid in a MS patient with dimethylfumarate treatment without lymphopenia or signs of PML. J. Neurol. 2018;265:1880–1882. doi: 10.1007/s00415-018-8931-7.
    1. Zucker B.E., Stacpoole S.R.L. Progressive multifocal leukoencephalopathy in the absence of immunosuppression. J. Neurovirol. 2018;24:119–122. doi: 10.1007/s13365-017-0592-2.
    1. Sanjo N., Kina S., Shishido-Hara Y., Nose Y., Ishibashi S., Fukuda T., Maehara T., Eishi Y., Mizusawa H., Yokota T. Progressive Multifocal Leukoencephalopathy with Balanced CD4/CD8 T-Cell Infiltration and Good Response to Mefloquine Treatment. Intern. Med. 2016;55:1631–1635. doi: 10.2169/internalmedicine.55.6051.
    1. Hervás J.V., Presas-Rodríguez S., Crespo-Cuevas A.M., Canento T., Lozano-Sánchez M., Massuet-Vilamajó A., Ramo-Tello C. Progressive multifocal leukoencephalopathy associated to natalizumab extended dosing regimen. Neurodegener. Dis. Manag. 2015;5:399–402. doi: 10.2217/nmt.15.42.
    1. Mikita K., Maeda T., Fujikura Y., Kozaki Y., Hara Y., Kanoh S., Kishida S., Saijo M., Nakamichi K., Kawana A. Does anti-JCV therapy improve the prognosis of AIDS-related PML? Clin. Neurol. Neurosurg. 2013;115:1853–1854. doi: 10.1016/j.clineuro.2013.01.013.
    1. Young B.E., Yeo T.R., Lim H.T., Vong K.Y., Tan K., Lye D.C., Lee C.C. Progressive Multifocal Leukoencephalopathy with Immune Reconstitution Inflammatory Syndrome (PML-IRIS): Two case reports of successful treatment with mefloquine and a review of the literature. Ann. Acad. Med. Singap. 2012;41:620–624.
    1. Adachi E., Koibuchi T., Imai K., Kikuchi T., Koga M., Nakamura H., Miura T., Iwamoto A., Fujii T. Favourable outcome of progressive multifocal leukoencephalopathy with mefloquine treatment in combination with antiretroviral therapy in an HIV-infected patient. Int. J. STD AIDS. 2012;23:603–605. doi: 10.1258/ijsa.2012.011305.
    1. Naito K., Ueno H., Sekine M., Kanemitsu M., Ohshita T., Nakamura T., Yamawaki T., Matsumoto M. Akinetic mutism caused by HIV-associated progressive multifocal leukoencephalopathy was successfully treated with mefloquine: A serial multimodal MRI Study. Intern. Med. 2012;51:205–209. doi: 10.2169/internalmedicine.51.6253.
    1. Kawakami T., Sakai K., Mimura Y., Senoo Y., Hirabayashi Y., Nakazawa H., Koshihara H., Oguchi K., Takei Y., Ohara S., et al. Development of primary central nervous system lymphoma associated with human immunodeficiency virus and JC virus infection. J. Clin. Exp. Hematop. 2014;54:211–217. doi: 10.3960/jslrt.54.211.
    1. Moenster R.P., Jett R.A. Mirtazapine and mefloquine therapy for progressive multifocal leukoencephalopathy in a patient infected with human immunodeficiency virus. Am. J. Health Syst. Pharm. 2012;69:496–498. doi: 10.2146/ajhp110392.
    1. Iannetta M., Bellizzi A., Lo Menzo S., Anzivino E., D’Abramo A., Oliva A., D’Agostino C., d’Ettorre G., Pietropaolo V., Vullo V., et al. HIV-associated progressive multifocal leukoencephalopathy: Longitudinal study of JC virus non-coding control region rearrangements and host immunity. J. Neurovirol. 2013;19:274–279. doi: 10.1007/s13365-013-0167-9.
    1. Clifford D.B., Nath A., Cinque P., Brew B.J., Zivadinov R., Gorelik L., Zhao Z., Duda P. A study of mefloquine treatment for progressive multifocal leukoencephalopathy: Results and exploration of predictors of PML outcomes. J. Neurovirol. 2013;19:351–358. doi: 10.1007/s13365-013-0173-y.
    1. Barrows N.J., Campos R.K., Powell S.T., Prasanth K.R., Schott-Lerner G., Soto-Acosta R., Galarza-Muñoz G., McGrath E.L., Urrabaz-Garza R., Gao J., et al. A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host Microbe. 2016;20:259–270. doi: 10.1016/j.chom.2016.07.004.
    1. Balasubramanian A., Teramoto T., Kulkarni A.A., Bhattacharjee A.K., Padmanabhan R. Antiviral activities of selected antimalarials against dengue virus type 2 and Zika virus. Antivir. Res. 2017;137:141–150. doi: 10.1016/j.antiviral.2016.11.015.
    1. Sun W., He S., Martínez-Romero C., Kouznetsova J., Tawa G., Xu M., Shinn P., Fisher E., Long Y., Motabar O., et al. Synergistic drug combination effectively blocks Ebola virus infection. Antivir. Res. 2017;137:165–172. doi: 10.1016/j.antiviral.2016.11.017.
    1. Nevin R.L. A serious nightmare: Psychiatric and neurologic adverse reactions to mefloquine are serious adverse reactions. Pharmacol. Res. Perspect. 2017;5 doi: 10.1002/prp2.328.
    1. Mazzon M., Ortega-Prieto A.M., Imrie D., Luft C., Hess L., Czieso S., Grove J., Skelton J.K., Farleigh L., Bugert J.J., et al. Identification of Broad-Spectrum Antiviral Compounds by Targeting Viral Entry. Viruses. 2019;11:176. doi: 10.3390/v11020176.
    1. Al-Bari M.A. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother. 2015;70:1608–1621. doi: 10.1093/jac/dkv018.
    1. Shimizu Y., Yamamoto S., Homma M., Ishida N. Effect of chloroquine on the growth of animal viruses. Arch. Gesamte Virusforsch. 1972;36:93–104. doi: 10.1007/BF01250299.
    1. Inglot A.D. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J. Gen. Virol. 1969;4:203–214. doi: 10.1099/0022-1317-4-2-203.
    1. Khan M., Santhosh S.R., Tiwari M., Lakshmana Rao P.V., Parida M. Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against Chikungunya virus in vero cells. J. Med. Virol. 2010;82:817–824. doi: 10.1002/jmv.21663.
    1. Sourisseau M., Schilte C., Casartelli N., Trouillet C., Guivel-Benhassine F., Rudnicka D., Sol-Foulon N., Le Roux K., Prevost M.C., Fsihi H., et al. Characterization of reemerging chikungunya virus. PLoS Pathog. 2007;3:e89. doi: 10.1371/journal.ppat.0030089.
    1. Han Y., Mesplède T., Xu H., Quan Y., Wainberg M.A. The antimalarial drug amodiaquine possesses anti-ZIKA virus activities. J. Med. Virol. 2018;90:796–802. doi: 10.1002/jmv.25031.
    1. Delvecchio R., Higa L.M., Pezzuto P., Valadão A.L., Garcez P.P., Monteiro F.L., Loiola E.C., Dias A.A., Silva F.J., Aliota M.T., et al. Chloroquine, an Endocytosis Blocking Agent, Inhibits Zika Virus Infection in Different Cell Models. Viruses. 2016;8:322. doi: 10.3390/v8120322.
    1. Dowall S.D., Bosworth A., Watson R., Bewley K., Taylor I., Rayner E., Hunter L., Pearson G., Easterbrook L., Pitman J., et al. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model. J. Gen. Virol. 2015;96:3484–3492. doi: 10.1099/jgv.0.000309.
    1. Madrid P.B., Chopra S., Manger I.D., Gilfillan L., Keepers T.R., Shurtleff A.C., Green C.E., Iyer L.V., Dilks H.H., Davey R.A., et al. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS ONE. 2013;8:e60579. doi: 10.1371/journal.pone.0060579.
    1. Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem. Funct. 2016;34:191–196. doi: 10.1002/cbf.3182.
    1. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G., Seidah N.G., Nichol S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2005;2:69. doi: 10.1186/1743-422X-2-69.
    1. Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M., Maes P. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother. 2009;53:3416–3421. doi: 10.1128/AAC.01509-08.
    1. Keyaerts E., Vijgen L., Maes P., Neyts J., Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 2004;323:264–268. doi: 10.1016/j.bbrc.2004.08.085.
    1. Blanchard E., Belouzard S., Goueslain L., Wakita T., Dubuisson J., Wychowski C., Rouillé Y. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol. 2006;80:6964–6972. doi: 10.1128/JVI.00024-06.
    1. Mizui T., Yamashina S., Tanida I., Takei Y., Ueno T., Sakamoto N., Ikejima K., Kitamura T., Enomoto N., Sakai T., et al. Inhibition of hepatitis C virus replication by chloroquine targeting virus-associated autophagy. J. Gastroenterol. 2010;45:195–203. doi: 10.1007/s00535-009-0132-9.
    1. Al-Bari M.A.A. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol. Res. Perspect. 2017;5:e00293. doi: 10.1002/prp2.293.
    1. Tsai W.P., Nara P.L., Kung H.F., Oroszlan S. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res. Hum. Retrovir. 1990;6:481–489. doi: 10.1089/aid.1990.6.481.
    1. Sperber K., Kalb T.H., Stecher V.J., Banerjee R., Mayer L. Inhibition of human immunodeficiency virus type 1 replication by hydroxychloroquine in T cells and monocytes. AIDS Res. Hum. Retrovir. 1993;9:91–98. doi: 10.1089/aid.1993.9.91.
    1. Chiang G., Sassaroli M., Louie M., Chen H., Stecher V.J., Sperber K. Inhibition of HIV-1 replication by hydroxychloroquine: Mechanism of action and comparison with zidovudine. Clin. Ther. 1996;18:1080–1092. doi: 10.1016/S0149-2918(96)80063-4.
    1. Savarino A., Gennero L., Sperber K., Boelaert J.R. The anti-HIV-1 activity of chloroquine. J. Clin. Virol. 2001;20:131–135. doi: 10.1016/S1386-6532(00)00139-6.
    1. Boelaert J.R., Piette J., Sperber K. The potential place of chloroquine in the treatment of HIV-1-infected patients. J. Clin. Virol. 2001;20:137–140. doi: 10.1016/S1386-6532(00)00140-2.
    1. Savarino A., Lucia M.B., Rastrelli E., Rutella S., Golotta C., Morra E., Tamburrini E., Perno C.F., Boelaert J.R., Sperber K., et al. Anti-HIV effects of chloroquine: Inhibition of viral particle glycosylation and synergism with protease inhibitors. J. Acquir. Immune. Defic. Syndr. 2004;35:223–232. doi: 10.1097/00126334-200403010-00002.
    1. Naarding M.A., Baan E., Pollakis G., Paxton W.A. Effect of chloroquine on reducing HIV-1 replication in vitro and the DC-SIGN mediated transfer of virus to CD4+ T-lymphocytes. Retrovirology. 2007;4:6. doi: 10.1186/1742-4690-4-6.
    1. Martinson J.A., Roman-Gonzalez A., Tenorio A.R., Montoya C.J., Gichinga C.N., Rugeles M.T., Tomai M., Krieg A.M., Ghanekar S., Baum L.L., et al. Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell. Immunol. 2007;250:75–84. doi: 10.1016/j.cellimm.2008.01.007.
    1. Ooi E.E., Chew J.S., Loh J.P., Chua R.C. In vitro inhibition of human influenza A virus replication by chloroquine. Virol. J. 2006;3:39. doi: 10.1186/1743-422X-3-39.
    1. Lin H.Y., Yang Y.T., Yu S.L., Hsiao K.N., Liu C.C., Sia C., Chow Y.H. Caveolar endocytosis is required for human PSGL-1-mediated enterovirus 71 infection. J. Virol. 2013;87:9064–9076. doi: 10.1128/JVI.00573-13.
    1. Tan Y.W., Yam W.K., Sun J., Chu J.J.H. An evaluation of Chloroquine as a broad-acting antiviral against Hand, Foot and Mouth Disease. Antivir. Res. 2018;149:143–149. doi: 10.1016/j.antiviral.2017.11.017.
    1. Boonyasuppayakorn S., Reichert E.D., Manzano M., Nagarajan K., Padmanabhan R. Amodiaquine, an antimalarial drug, inhibits dengue virus type 2 replication and infectivity. Antivir. Res. 2014;106:125–134. doi: 10.1016/j.antiviral.2014.03.014.
    1. Baba M., Toyama M., Sakakibara N., Okamoto M., Arima N., Saijo M. Establishment of an antiviral assay system and identification of severe fever with thrombocytopenia syndrome virus inhibitors. Antivir. Chem. Chemother. 2017;25:83–89. doi: 10.1177/2040206617740303.
    1. Burdick J.R., Durand D.P. Primaquine diphosphate: Inhibition of Newcastle disease virus replication. Antimicrob. Agents Chemother. 1974;6:460–464. doi: 10.1128/AAC.6.4.460.
    1. Nixon G.L., Moss D.M., Shone A.E., Lalloo D.G., Fisher N., O’Neill P.M., Ward S.A., Biagini G.A. Antimalarial pharmacology and therapeutics of atovaquone. J. Antimicrob. Chemother. 2013;68:977–985. doi: 10.1093/jac/dks504.
    1. Cifuentes Kottkamp A., De Jesus E., Grande R., Brown J.A., Jacobs A.R., Lim J.K., Stapleford K.A. Atovaquone Inhibits Arbovirus Replication through the Depletion of Intracellular Nucleotides. J. Virol. 2019;93 doi: 10.1128/JVI.00389-19.
    1. Castelli F., Odolini S., Autino B., Foca E., Russo R. Malaria Prophylaxis: A Comprehensive Review. Pharmaceuticals. 2010;3:3212–3239. doi: 10.3390/ph3103212.
    1. Rothan H.A., Mohamed Z., Paydar M., Rahman N.A., Yusof R. Inhibitory effect of doxycycline against dengue virus replication in vitro. Arch. Virol. 2014;159:711–718. doi: 10.1007/s00705-013-1880-7.
    1. Rothan H.A., Bahrani H., Mohamed Z., Teoh T.C., Shankar E.M., Rahman N.A., Yusof R. A combination of doxycycline and ribavirin alleviated chikungunya infection. PLoS ONE. 2015;10:e0126360. doi: 10.1371/journal.pone.0126360.
    1. Wu Z.C., Wang X., Wei J.C., Li B.B., Shao D.H., Li Y.M., Liu K., Shi Y.Y., Zhou B., Qiu Y.F., et al. Antiviral activity of doxycycline against vesicular stomatitis virus in vitro. FEMS Microbiol. Lett. 2015;362 doi: 10.1093/femsle/fnv195.
    1. Ng H.H., Narasaraju T., Phoon M.C., Sim M.K., Seet J.E., Chow V.T. Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: Involvement of matrix metalloproteinases. Exp. Mol. Pathol. 2012;92:287–295. doi: 10.1016/j.yexmp.2012.03.003.
    1. Zhu J., Liu S., Liu Z., Li Y., Tian J., Hu X. A highly sensitive and selective assay of doxycycline by dualwavelength overlapping resonance Rayleigh scattering. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;124:237–242. doi: 10.1016/j.saa.2013.12.114.
    1. Polat K.Y., Tosun M.S., Ertekin V., Aydinli B., Emre S. Brucella infection with pancytopenia after pediatric liver transplantation. Transpl. Infect. Dis. 2012;14:326–329. doi: 10.1111/j.1399-3062.2011.00709.x.
    1. Walter M.S., Frank M.J., Satué M., Monjo M., Rønold H.J., Lyngstadaas S.P., Haugen H.J. Bioactive implant surface with electrochemically bound doxycycline promotes bone formation markers in vitro and in vivo. Dent. Mater. 2014;30:200–214. doi: 10.1016/j.dental.2013.11.006.
    1. Doxycycline. [(accessed on 15 December 2019)];2018 May 1; Available online: .
    1. Briolant S., Wurtz N., Zettor A., Rogier C., Pradines B. Susceptibility of Plasmodium falciparum isolates to doxycycline is associated with pftetQ sequence polymorphisms and pftetQ and pfmdt copy numbers. J. Infect. Dis. 2010;201:153–159. doi: 10.1086/648594.
    1. Zhao Y., Wang X., Li L., Li C. Doxycycline inhibits proliferation and induces apoptosis of both human papillomavirus positive and negative cervical cancer cell lines. Can. J. Physiol. Pharmacol. 2016;94:526–533. doi: 10.1139/cjpp-2015-0481.
    1. Yang J.M., Chen Y.F., Tu Y.Y., Yen K.R., Yang Y.L. Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors. PLoS ONE. 2007;2:e428. doi: 10.1371/journal.pone.0000428.
    1. Bhattacharjee M.K. Antimetabolites: Antibiotics That Inhibit Nucleotide Synthesis. Springer International Publishing; Basel, Switzerland: 2016. pp. 95–108.
    1. Supuran C.T. Special Issue: Sulfonamides. Molecules. 2017;22:1642. doi: 10.3390/molecules22101642.
    1. Green M.D., van Eijk A.M., van Ter Kuile F.O., Ayisi J.G., Parise M.E., Kager P.A., Nahlen B.L., Steketee R., Nettey H. Pharmacokinetics of sulfadoxine-pyrimethamine in HIV-infected and uninfected pregnant women in Western Kenya. J. Infect. Dis. 2007;196:1403–1408. doi: 10.1086/522632.
    1. Li N., Thompson S., Schultz D.C., Zhu W., Jiang H., Luo C., Lieberman P.M. Discovery of selective inhibitors against EBNA1 via high throughput in silico virtual screening. PLoS ONE. 2010;5:e10126. doi: 10.1371/journal.pone.0010126.
    1. Angius F., Piras E., Uda S., Madeddu C., Serpe R., Bigi R., Chen W., Dittmer D.P., Pompei R., Ingianni A. Antimicrobial sulfonamides clear latent Kaposi sarcoma herpesvirus infection and impair MDM2-p53 complex formation. J. Antibiot. 2017;70:962–966. doi: 10.1038/ja.2017.67.
    1. Caselli E., Galvan M., Santoni F., Alvarez S., de Lera A.R., Ivanova D., Gronemeyer H., Caruso A., Guidoboni M., Cassai E., et al. Retinoic acid analogues inhibit human herpesvirus 8 replication. Antivir. Ther. 2008;13:199–209.
    1. Krug L.T., Pozharskaya V.P., Yu Y., Inoue N., Offermann M.K. Inhibition of infection and replication of human herpesvirus 8 in microvascular endothelial cells by alpha interferon and phosphonoformic acid. J. Virol. 2004;78:8359–8371. doi: 10.1128/JVI.78.15.8359-8371.2004.
    1. Tselis A. Evidence for viral etiology of multiple sclerosis. Semin. Neurol. 2011;31:307–316. doi: 10.1055/s-0031-1287656.
    1. Buckwold V.E., Beer B.E., Donis R.O. Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents. Antivir. Res. 2003;60:1–15. doi: 10.1016/S0166-3542(03)00174-8.
    1. Romero M.R., Serrano M.A., Vallejo M., Efferth T., Alvarez M., Marin J.J. Antiviral effect of artemisinin from Artemisia annua against a model member of the Flaviviridae family, the bovine viral diarrhoea virus (BVDV) Planta Med. 2006;72:1169–1174. doi: 10.1055/s-2006-947198.

Source: PubMed

3
Subscribe