Plasma phospholipid fatty acid profile confirms compliance to a novel saturated fat-reduced, monounsaturated fat-enriched dairy product intervention in adults at moderate cardiovascular risk: a randomized controlled trial

Oonagh Markey, Dafni Vasilopoulou, Kirsty E Kliem, Albert Koulman, Colette C Fagan, Keith Summerhill, Laura Y Wang, Alistair S Grandison, David J Humphries, Susan Todd, Kim G Jackson, David I Givens, Julie A Lovegrove, Oonagh Markey, Dafni Vasilopoulou, Kirsty E Kliem, Albert Koulman, Colette C Fagan, Keith Summerhill, Laura Y Wang, Alistair S Grandison, David J Humphries, Susan Todd, Kim G Jackson, David I Givens, Julie A Lovegrove

Abstract

Background: Dairy products are a major contributor to dietary SFA. Partial replacement of milk SFA with unsaturated fatty acids (FAs) is possible through oleic-acid rich supplementation of the dairy cow diet. To assess adherence to the intervention of SFA-reduced, MUFA-enriched dairy product consumption in the RESET (REplacement of SaturatEd fat in dairy on Total cholesterol) study using 4-d weighed dietary records, in addition to plasma phospholipid FA (PL-FA) status.

Methods: In a randomised, controlled, crossover design, free-living UK participants identified as moderate risk for CVD (n = 54) were required to replace habitually consumed dairy foods (milk, cheese and butter), with study products with a FA profile typical of retail products (control) or SFA-reduced, MUFA-enriched profile (modified), for two 12-week periods, separated by an 8-week washout period. A flexible food-exchange model was used to implement each isoenergetic high-fat, high-dairy diet (38% of total energy intake (%TE) total fat): control (dietary target: 19%TE SFA; 11%TE MUFA) and modified (16%TE SFA; 14%TE MUFA).

Results: Following the modified diet, there was a smaller increase in SFA (17.2%TE vs. 19.1%TE; p < 0.001) and greater increase in MUFA intake (15.4%TE vs. 11.8%TE; p < 0.0001) when compared with the control. PL-FA analysis revealed lower total SFAs (p = 0.006), higher total cis-MUFAs and trans-MUFAs (both p < 0.0001) following the modified diet.

Conclusion: The food-exchange model was successfully used to achieve RESET dietary targets by partial replacement of SFAs with MUFAs in dairy products, a finding reflected in the PL-FA profile and indicative of objective dietary compliance.

Trial registration: ClinicalTrials.gov Identifier: NCT02089035 , date 05-01-2014.

Keywords: Cardiovascular disease; Dairy products; Dietary fat composition; Fatty acids; Food-exchange model; Monounsaturated fatty acids; Nutrition assessment; Phospholipids; Saturated fatty acids.

Figures

Fig. 1
Fig. 1
Flow of participants through the different stages of the RESET study
Fig. 2
Fig. 2
Change-from-baseline in the plasma phospholipid profile of SFA: 16 : 0 (a) and MUFAs: 18 : 1cis-9 and 18 : 1trans-9 (b) following 12-week diets that incorporated control and modified dairy products. Values are means ± SEM, n = 54. Significance shown as * p <0.001, ** p < 0.0001
Fig. 3
Fig. 3
Orthogonal PLS-DA, score plots at baseline (a) and post-intervention (b) calculated using plasma phospholipid FA concentrations in adults at moderate risk of cardiovascular disease (n = 54). FA, fatty acid; PLS-DA, partial least squares discriminant analysis

References

    1. Townsend N, Bhatnagar P, Wilkins E, Wickramasinghe K. M R: Cardiovascular disease statistics. London: British Heart Foundation; 2015.
    1. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.
    1. COMA: Department of Health—Committee on Medical Aspects of Food Policy . Dietary reference values for food energy and nutrients in the United Kingdom: report on the Panel of Dietary Reference Values of the Committee on Medical Aspects of Food Policy (Report of Health and Social Subjects, No. 41) London: The Stationary Office; 1991.
    1. Bates B, Cox L, Nicholson S, Page P, Prentice A, Steer T, G S. National Diet and Nutrition Survey. Results from Years 5–6 (combined) of the Rolling Programme (2012/13 – 2013/14). [cited 21 Sept 2016]. Available from: . 2016.
    1. USDA . Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington: USDA and US Department of Health and Human Services; 2015.
    1. Buttriss JL. The Eatwell guide refreshed. Nutr Bull. 2016;41:135–41. doi: 10.1111/nbu.12211.
    1. Elwood PC, Pickering JE, Givens DI, Gallacher JE. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids. 2010;45:925–39. doi: 10.1007/s11745-010-3412-5.
    1. Soedamah-Muthu SS, Ding EL, Al-Delaimy WK, Hu FB, Engberink MF, Willett WC, Geleijnse JM. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose–response meta-analysis of prospective cohort studies. Am J Clin Nutr. 2011;93:158–71. doi: 10.3945/ajcn.2010.29866.
    1. Lamarche B, Givens DI, Soedamah-Muthu S, Krauss RM, Jakobsen MU, Bischoff-Ferrari HA, Pan A, Després J-P. Does milk consumption contribute to cardiometabolic health and overall diet quality? Can J Cardiol. 2016;32:1026–32. doi: 10.1016/j.cjca.2015.12.033.
    1. de Goede J, Soedamah‐Muthu SS, Pan A, Gijsbers L, Geleijnse JM. Dairy consumption and risk of stroke: a systematic review and updated dose–response meta‐analysis of prospective cohort studies. J Am Heart Assoc. 2016;5:e002787. doi: 10.1161/JAHA.115.002787.
    1. Huth PJ, Park KM. Influence of dairy product and milk fat consumption on cardiovascular disease risk: a review of the evidence. Adv Nutr. 2012;3:266–85. doi: 10.3945/an.112.002030.
    1. Astrup A, Rice Bradley B, Brenna J, Delplanque B, Ferry M, Torres-Gonzalez M. Regular-fat dairy and human health: a synopsis of symposia presented in Europe and North America (2014–2015) Nutrients. 2016;8:463. doi: 10.3390/nu8080463.
    1. O’Donnell A, Spatny K, Vicini J, Bauman D. Survey of the fatty acid composition of retail milk differing in label claims based on production management practices. J Dairy Sci. 2010;93:1918–25. doi: 10.3168/jds.2009-2799.
    1. Fekete ÁA, Givens DI, Lovegrove JA. The impact of milk proteins and peptides on blood pressure and vascular function: a review of evidence from human intervention studies. Nutr Res Rev. 2013;26:177–90. doi: 10.1017/S0954422413000139.
    1. Markey O, Vasilopoulou D, Givens DI, Lovegrove JA. Dairy and cardiovascular health: friend or foe? Nutr Bull. 2014;39:161–71. doi: 10.1111/nbu.12086.
    1. Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, Franco OH, Butterworth AS, Forouhi NG, Thompson SG, et al. Association of dietary, circulating, and supplement fatty acids with coronary risk. A systematic review and meta-analysis. Ann Intern Med. 2014;160:398–406. doi: 10.7326/M13-1788.
    1. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am J Clin Nutr. 2010;91:535–46. doi: 10.3945/ajcn.2009.27725.
    1. de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, Uleryk E, Budylowski P, Schünemann H, Beyene J, Anand SS. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ. 2015;351:h3978. doi: 10.1136/bmj.h3978.
    1. Vafeiadou K, Weech M, Altowaijri H, Todd S, Yaqoob P, Jackson KG, Lovegrove JA. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid biomarkers, E-selectin, and blood pressure: results from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study. Am J Clin Nutr. 2015;102:40–8. doi: 10.3945/ajcn.114.097089.
    1. Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ. 2013;346:e8707. doi: 10.1136/bmj.e8707.
    1. Hooper L, Martin N, Abdelhamid A, Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev. 2015;6:Cd011737.
    1. DeSalvo KB, Olson R, Casavale KO. Dietary guidelines for americans. JAMA. 2016;315:457–8. doi: 10.1001/jama.2015.18396.
    1. WHO . Food based dietary guidelines in the WHO European Region. Copenhagen: WHO; 2003.
    1. Givens DI. Session 4: challenges facing the food industry in innovating for health. Impact on CVD risk of modifying milk fat to decrease intake of SFA and increase intake of cis-MUFA. Proc Nutr Soc. 2008;67:419–27. doi: 10.1017/S0029665108008707.
    1. Kliem KE, Shingfield KJ. Manipulation of milk fatty acid composition in lactating cows: Opportunities and challenges. Eur J Lipid S Tech; 101002/ejlt201400543. 2016;118(11):1661–683.
    1. Lock AL, Givens DI, Bauman DE. Dairy fat: perceptions and realities. In Milk and dairy products as functional foods. Chichester: Wiley. 2014: 174–197.
    1. Livingstone KM, Lovegrove JA, Givens DI. The impact of substituting SFA in dairy products with MUFA or PUFA on CVD risk: evidence from human intervention studies. Nutr Res Rev. 2012;25:193–206. doi: 10.1017/S095442241200011X.
    1. Shaw DI, Tierney AC, McCarthy S, Upritchard J, Vermunt S, Gulseth HL, Drevon CA, Blaak EE, Saris WH, Karlstrom B, et al. LIPGENE food-exchange model for alteration of dietary fat quantity and quality in free-living participants from eight European countries. Br J Nutr. 2009;101:750–9. doi: 10.1017/S0007114508039962.
    1. Skeaff CM, Hodson L, McKenzie JE. Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. J Nutr. 2006;136:565–9.
    1. Hodson L, Skeaff CM, Fielding BA. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog Lipid Res. 2008;47:348–80. doi: 10.1016/j.plipres.2008.03.003.
    1. Weech M, Vafeiadou K, Hasaj M, Todd S, Yaqoob P, Jackson KG, Lovegrove JA. Development of a food-exchange model to replace saturated fat with MUFAs and n-6 PUFAs in adults at moderate cardiovascular risk. J Nutr. 2014;144:846–55. doi: 10.3945/jn.114.190645.
    1. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47. doi: 10.1161/01.CIR.97.18.1837.
    1. Givens D, Kliem K, Humphries D, Shingfield KJ, Morgan R. Effect of replacing calcium salts of palm oil distillate with rapeseed oil, milled or whole rapeseeds on milk fatty-acid composition in cows fed maize silage-based diets. Animal. 2009;3:1067–74. doi: 10.1017/S175173110900442X.
    1. Treasure T, MacRae KD. Minimisation: the platinum standard for trials?: Randomisation doesn’t guarantee similarity of groups; minimisation does. BMJ. 1998;317:362–3. doi: 10.1136/bmj.317.7155.362.
    1. Moore C, Gitau R, Goff L, Lewis FJ, Griffin MD, Chatfield MD, Jebb SA, Frost GS, Sanders TA, Griffin BA, Lovegrove JA. Successful manipulation of the quality and quantity of fat and carbohydrate consumed by free-living individuals using a food exchange model. J Nutr. 2009;139:1534–40. doi: 10.3945/jn.108.103374.
    1. Henderson L, Gregory J, Irving K. G. S: The National Diet and Nutrition Survey: adults aged 19 to 64 years. Vol. 2, Energy, protein, carbohydrate, fat and alcohol intake. London: The Stationery Office; 2003.
    1. Nelson M, Atkinson M, Meyer J. A photographic atlas of food portion sizes. London: MAFF publications; 1997.
    1. Kliem KE, Shingfield KJ, Livingstone KM, Givens DI. Seasonal variation in the fatty acid composition of milk available at retail in the United Kingdom and implications for dietary intake. Food Chem. 2013;141:274–81. doi: 10.1016/j.foodchem.2013.02.116.
    1. Glasser F, Doreau M, Ferlay A, Chilliard Y. Technical note: estimation of milk fatty acid yield from milk fat data. J Dairy Sci. 2007;90:2302–4. doi: 10.3168/jds.2006-870.
    1. Public Health England . Scientific Advisory Committee on Nutrition Carbohydrates and Health. 2015.
    1. Henry CJ. Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr. 2005;8:1133–52. doi: 10.1079/PHN2005801.
    1. Black AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int J Obes Relat Metab Disord. 2000;24:1119–30. doi: 10.1038/sj.ijo.0801376.
    1. Wang LY, Summerhill K, Rodriguez-Canas C, Mather I, Patel P, Eiden M, Young S, Forouhi NG, Koulman A. Development and validation of a robust automated analysis of plasma phospholipid fatty acids for metabolic phenotyping of large epidemiological studies. Genome Med. 2013;5:39. doi: 10.1186/gm443.
    1. Burdge GC, Wright P, Jones AE, Wootton SA. A method for separation of phosphatidylcholine, triacylglycerol, non-esterified fatty acids and cholesterol esters from plasma by solid-phase extraction. Br J Nutr. 2000;84:781–7.
    1. De Roos NM, Bots ML, Schouten EG, Katan MB. Within-subject variability of flow-mediated vasodilation of the brachial artery in healthy men and women: implications for experimental studies. Ultrasound Med Biol. 2003;29:401–6. doi: 10.1016/S0301-5629(02)00709-3.
    1. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015;43:W251–7. doi: 10.1093/nar/gkv380.
    1. Noakes M, Nestel PJ, Clifton PM. Modifying the fatty acid profile of dairy products through feedlot technology lowers plasma cholesterol of humans consuming the products. Am J Clin Nutr. 1996;63:42–6.
    1. Katan MB, Deslypere JP, van Birgelen AP, Penders M, Zegwaard M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: an 18-month controlled study. J Lipid Res. 1997;38:2012–22.
    1. Tholstrup T, Raff M, Basu S, Nonboe P, Sejrsen K, Straarup EM. Effects of butter high in ruminant trans and monounsaturated fatty acids on lipoproteins, incorporation of fatty acids into lipid classes, plasma C-reactive protein, oxidative stress, hemostatic variables, and insulin in healthy young men. Am J Clin Nutr. 2006;83:237–43.
    1. Raatz SK, Bibus D, Thomas W, Kris-Etherton P. Total Fat intake modifies plasma fatty acid composition in humans. J Nutr. 2001;131:231–4.
    1. Chavarro JE, Kenfield SA, Stampfer MJ, Loda M, Campos H, Sesso HD, Ma J. Blood levels of saturated and monounsaturated fatty acids as markers of de novo lipogenesis and risk of prostate cancer. Am J Epidemiol. 2013;178:1246–55. doi: 10.1093/aje/kwt136.
    1. Markey O, Kliem KE, Humphries DJ, Morgan R, Vasilopoulou D, Grandison A, Fagan CC, Todd S, Jackson KG, Lovegrove LA, Givens DI. Effect of feeding high-oleic sunflower oil to dairy cows on the milk fatty acid profile – RESET study. Proc Nutr Soc. 2015;74(OCE1):E52
    1. Jakobsen MU, Overvad K, Dyerberg J, Heitmann BL. Intake of ruminant trans fatty acids and risk of coronary heart disease. Int J Epidemiol. 2008;37:173–82. doi: 10.1093/ije/dym243.
    1. Gebauer SK, Destaillats F, Dionisi F, Krauss RM, Baer DJ. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: a double-blind, randomized controlled trial. Am J Clin Nutr. 2015;102:1339–46. doi: 10.3945/ajcn.115.116129.
    1. Motard-Belanger A, Charest A, Grenier G, Paquin P, Chouinard Y, Lemieux S, Couture P, Lamarche B. Study of the effect of trans fatty acids from ruminants on blood lipids and other risk factors for cardiovascular disease. Am J Clin Nutr. 2008;87:593–9.
    1. Kliem KE, Reynolds CK, Humphries DJ, Kirkland RM, Barratt CES, Livingstone KM, Givens DI. Incremental effect of a calcium salt of cis-monounsaturated fatty acids supplement on milk fatty acid composition in cows fed maize silage-based diets. J Dairy Sci. 2013;96:3211–21. doi: 10.3168/jds.2012-6211.
    1. Bauman DE, Griinari JM. Regulation and nutritional manipulation of milk fat. Low-fat milk syndrome. Adv Exp Med Biol. 2000;480:209–16. doi: 10.1007/0-306-46832-8_26.
    1. Lockyer S, Tzanetou M, Carvalho-Wells AL, Jackson KG, Minihane AM, Lovegrove JA. SATgenɛ dietary model to implement diets of differing fat composition in prospectively genotyped groups (apoE) using commercially available foods. Br J Nutr. 2012;108:1705–13. doi: 10.1017/S0007114511007082.
    1. Rennie KL, Siervo M, Jebb SA. Can self-reported dieting and dietary restraint identify underreporters of energy intake in dietary surveys? J Am Diet Assoc. 2006;106:1667–72. doi: 10.1016/j.jada.2006.07.014.
    1. Macdiarmid J, Blundell J. Assessing dietary intake: Who, what and why of under-reporting. Nutr Res Rev. 1998;11:231–53. doi: 10.1079/NRR19980017.

Source: PubMed

3
Subscribe