COGTIPS: a double-blind randomized active controlled trial protocol to study the effect of home-based, online cognitive training on cognition and brain networks in Parkinson's disease

Tim D van Balkom, Henk W Berendse, Ysbrand D van der Werf, Jos W R Twisk, Iris Zijlstra, Rob H Hagen, Tanja Berk, Chris Vriend, Odile A van den Heuvel, Tim D van Balkom, Henk W Berendse, Ysbrand D van der Werf, Jos W R Twisk, Iris Zijlstra, Rob H Hagen, Tanja Berk, Chris Vriend, Odile A van den Heuvel

Abstract

Background: Cognitive dysfunction is highly prevalent in Parkinson's disease (PD) and a large proportion of patients eventually develops PD-related dementia. Currently, no effective treatment is available. Cognitive training is effective in relieving cognitive dysfunctions in several -neurodegenerative- diseases, and earlier small-scale trials have shown positive results for PD. In this randomized controlled trial, we assess the efficacy of online home-based cognitive training, its long-term effects, as well as the underlying neural correlates in a large group of PD patients.

Methods: In this double-blind randomized controlled trial we will include 140 non-demented patients with idiopathic PD that experience significant subjective cognitive complaints. Participants will be randomized into a cognitive training group and an active control group. In both groups, participants will individually perform an online home-based intervention for eight weeks, three times a week during 45 min. The cognitive training consists of thirteen games that focus on executive functions, attention and processing speed with an adaptive difficulty. The active control comprises three games that keep participants cognitively engaged without a training component. Participants will be subjected to extensive neuropsychological assessments at baseline and after the intervention, and at six months, one year and two years of follow-up. A subset of participants (40 in each treatment condition) will undergo structural and functional magnetic resonance imaging. The primary outcome of this study is the performance on the Tower of London task. Secondary outcomes are objective and subjective cognitive functioning, conversion to PD-related mild cognitive impairment or dementia, functional and structural connectivity and network topological indices measured with magnetic resonance imaging. None of the outcome measures are part of the cognitive training program. Data will be analyzed using multivariate mixed-model analyses and odds ratios.

Discussion: This study is a large-scale cognitive training study in PD patients that evaluates the efficacy in relieving cognitive dysfunction, and the underlying mechanisms. The strengths of this study are the large sample size, the long follow-up period and the use of neuroimaging in a large subsample. The study is expected to have a low attrition and a high compliance rate given the home-based and easily-accessible intervention in both conditions.

Trial registration: ClinicalTrials.gov ID NCT02920632 . Registered September 30, 2016.

Keywords: Cognitive impairment; Cognitive rehabilitation; Cognitive training; MRI; Network; Neuroimaging; Neuropsychological assessment; Parkinson’s disease; RCT.

Conflict of interest statement

The authors declare they have no competing interests.

Figures

Fig. 1
Fig. 1
Working model of local compensatory brain activity (in yellow) that preserves intact cognitive functioning (in blue) but fails at later disease stage, while global brain network integrity gradually degenerates (in green). Dashed lines illustrate the hypothesized effects that CT may have on local and global brain infrastructure and on cognitive function. Adapted from [37]
Fig. 2
Fig. 2
Global overview of the COGTIPS time schedule

References

    1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368–376.
    1. Aarsland D, Marsh L, Schrag A. Neuropsychiatric symptoms in Parkinson’s disease. Mov Disord. 2009;24:2175–2186.
    1. Litvan I, Aarsland D, Adler CH, Goldman JG, Kulisevsky J, Mollenhauer B, Rodriguez-Oroz MC, Troster AI, Weintraub D. MDS task force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord. 2011;26(10):1814–1824.
    1. Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P, Burn D, Chahine LM, et al. Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord. 2015;30(7):919–927.
    1. Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol. 2003;60(3):387–392.
    1. Hely MA, Reid WG, Adena MA, Halliday GM, Morris JG. The Sydney multicenter study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008;23(6):837–844.
    1. Aarsland D, Kurz MW. The epidemiology of dementia associated with Parkinson disease. J Neurol Sci. 2010;289:18–22.
    1. Klepac N, Trkulja V, Relja M, Babic T. Is quality of life in non-demented Parkinson's disease patients related to cognitive performance? A clinic-based cross-sectional study. Eur J Neurol. 2008;15(2):128–133.
    1. Rosenthal E, Brennan L, Xie S, Hurtig H, Milber J, Weintraub D, Karlawish J, Siderowf A. Association between cognition and function in patients with Parkinson disease with and without dementia. Mov Disord. 2010;25(9):1170–1176.
    1. Hurt CS, Landau S, Burn DJ, Hindle JV, Samuel M, Wilson K, Brown RG, Group P-PS Cognition, coping, and outcome in Parkinson's disease. Int Psychogeriatr. 2012;24(10):1656–1663.
    1. Fletcher P, Leake A, Marion MH. Patients with Parkinson's disease dementia stay in the hospital twice as long as those without dementia. Mov Disord. 2011;26(5):919.
    1. Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease. Lancet Neurol. 2010;9(12):1200–1213.
    1. Emre M. Dementia in Parkinson's disease: cause and treatment. Curr Opin Neurol. 2004;17(4):399–404.
    1. Seppi K, Weintraub D, Coelho M, Perez-Lloret S, Fox SH, Katzenschlager R, Hametner EM, Poewe W, Rascol O, Goetz CG, et al. The Movement Disorder Society evidence-based medicine review update: treatments for the non-motor symptoms of Parkinson's disease. Mov Disord. 2011;26(Suppl 3):S42–S80.
    1. Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP, Durif F, Kulisevsky J, van Laar T, Lees A, et al. Rivastigmine for dementia associated with Parkinson's disease. N Engl J Med. 2004;351(24):2509–2518.
    1. Prigatano GP. A history of cognitive rehabilitation. In: Halligan PW, Wade DT, editors. The Effectiveness of Rehabilitation for Cognitive Deficits. Oxford: Oxford University Press; 2005. pp. 3–10.
    1. Sitzer DI, Twamley EW, Jeste DV. Cognitive training in Alzheimer's disease: a meta-analysis of the literature. Acta Psychiatr Scand. 2006;114(2):75–90.
    1. Chandler MJ, Parks AC, Marsiske M, Rotblatt LJ, Smith GE. Everyday impact of cognitive interventions in mild cognitive impairment: a systematic review and meta-analysis. Neuropsychol Rev. 2016;26(3):225–251.
    1. Wykes T, Huddy V, Cellard C, McGurk SR, Czobor P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am J Psychiatry. 2011;168(5):472–485.
    1. Elliott M, Parente F. Efficacy of memory rehabilitation therapy: a meta-analysis of TBI and stroke cognitive rehabilitation literature. Brain Inj. 2014;28(12):1610–1616.
    1. Rohling ML, Faust ME, Beverly B, Demakis G. Effectiveness of cognitive rehabilitation following acquired brain injury: a meta-analytic re-examination of Cicerone et al.'s (2000, 2005) systematic reviews. Neuropsychology. 2009;23(1):20–39.
    1. Leung IH, Walton CC, Hallock H, Lewis SJ, Valenzuela M, Lampit A. Cognitive training in Parkinson disease: a systematic review and meta-analysis. Neurology. 2015;85(21):1843–1851.
    1. Edwards JD, Hauser RA, O'Connor ML, Valdes EG, Zesiewicz TA, Uc EY. Randomized trial of cognitive speed of processing training in Parkinson disease. Neurology. 2013;81(15):1284–1290.
    1. Hindle JV, Petrelli A, Clare L, Kalbe E. Nonpharmacological enhancement of cognitive function in Parkinson's disease: a systematic review. Mov Disord. 2013;28(8):1034–1049.
    1. Hindle JV, Watermeyer TJ, Roberts J, Martyr A, Lloyd-Williams H, Brand A, Gutting P, Hoare Z, Edwards RT, Clare L. Cognitive rehabiliation for Parkinson's disease demantia: a study protocol for a pilot randomised controlled trial. Trials. 2016;17:152.
    1. van de Weijer SC, Duits AA, Bloem BR, Kessels RP, Jansen JF, Kohler S, Tissingh G, Kuijf ML. The Parkin'Play study: protocol of a phase II randomized controlled trial to assess the effects of a health game on cognition in Parkinson's disease. BMC Neurol. 2016;16(1):209.
    1. Gerrits NJ, van der Werf YD, Verhoef KM, Veltman DJ, Groenewegen HJ, Berendse HW, van den Heuvel OA. Compensatory fronto-parietal hyperactivation during set-shifting in unmedicated patients with Parkinson's disease. Neuropsychologia. 2015.
    1. Trujillo JP, Gerrits NJ, Veltman DJ, Berendse HW, van der Werf YD, van den Heuvel OA. Reduced neural connectivity but increased task-related activity during working memory in de novo Parkinson patients. Hum Brain Mapp. 2014;36(4):1554–1566.
    1. Trujillo JP, Gerrits NJ, Vriend C, Berendse HW, van den Heuvel OA, van der Werf YD. Impaired planning in Parkinson's disease is reflected by reduced brain activation and connectivity. Hum Brain Mapp. 2015;36(9):3703–3715.
    1. Vriend C, Gerrits NJ, Berendse HW, Veltman DJ, van den Heuvel OA, van der Werf YD. Failure of stop and go in de novo Parkinson's disease-a functional magnetic resonance imaging study. Neurobiol Aging. 2015;36(1):470–475.
    1. Stam CJ. Modern network science of neurological disorders. Nat Rev Neurosci. 2014;15(10):683–695.
    1. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 2003;24(2):197–211.
    1. Olde Dubbelink KT, Stoffers D, Deijen JB, Twisk JW, Stam CJ, Berendse HW. Cognitive decline in Parkinson's disease is associated with slowing of resting-state brain activity: a longitudinal study. Neurobiol Aging. 2013;34(2):408–418.
    1. Baggio HC, Sala-Llonch R, Segura B, Marti MJ, Valldeoriola F, Compta Y, Tolosa E, Junque C. Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp. 2014;35(9):4620–4634.
    1. Olde Dubbelink KT, Hillebrand A, Stoffers D, Deijen JB, Twisk JW, Stam CJ, Berendse HW. Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain. 2014;137(Pt 1):197–207.
    1. Gerrits NJHM. Understanding cognitive heterogeneity in Parkinson's disease:: An imaging approach. 2015.
    1. Chapman SB, Aslan S, Spence JS, Hart JJ, Jr, Bartz EK, Didehbani N, Keebler MW, Gardner CM, Strain JF, DeFina LF, et al. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb Cortex. 2015;25(2):396–405.
    1. Klados MA, Styliadis C, Frantzidis CA, Paraskevopoulos E, Bamidis PD. Beta-band functional connectivity is reorganized in mild cognitive impairment after combined computerized physical and cognitive training. Front Neurosci. 2016;10:55.
    1. Suo C, Singh M F, Gates N, Wen W, Sachdev P, Brodaty H, Saigal N, Wilson G C, Meiklejohn J, Singh N, Baune B T, Baker M, Foroughi N, Wang Y, Mavros Y, Lampit A, Leung I, Valenzuela M J. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Molecular Psychiatry. 2016;21(11):1633–1642.
    1. Bonavita S, Sacco R, Della Corte M, Esposito S, Sparaco M, d'Ambrosio A, Docimo R, Bisecco A, Lavorgna L, Corbo D, et al. Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study. J Neurol. 2015;262(1):91–100.
    1. De Giglio L, Tona F, De Luca F, Petsas N, Prosperini L, Bianchi V, Pozzilli C, Pantano P. Multiple sclerosis: changes in thalamic resting-state functional connectivity induced by a home-based cognitive rehabilitation program. Radiology. 2016;280(1):202–211.
    1. Parisi L, Rocca MA, Valsasina P, Panicari L, Mattioli F, Filippi M. Cognitive rehabilitation correlates with the functional connectivity of the anterior cingulate cortex in patients with multiple sclerosis. Brain Imaging Behav. 2014;8(3):387–393.
    1. Subramaniam K, Luks TL, Fisher M, Simpson GV, Nagarajan S, Vinogradov S. Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia. Neuron. 2012;73(4):842–853.
    1. Subramaniam K, Luks TL, Garrett C, Chung C, Fisher M, Nagarajan S, Vinogradov S. Intensive cognitive training in schizophrenia enhances working memory and associated prefrontal cortical efficiency in a manner that drives long-term functional gains. Neuroimage. 2014;99:281–292.
    1. Cao W, Cao X, Hou C, Li T, Cheng Y, Jiang L, Luo C, Li C, Yao D. Effects of cognitive training on resting-state functional connectivity of default mode, salience, and central executive networks. Front Aging Neurosci. 2016;8:70.
    1. De Marco M, Meneghello F, Duzzi D, Rigon J, Pilosio C, Venneri A. Cognitive stimulation of the default-mode network modulates functional connectivity in healthy aging. Brain Res Bull. 2016;121:26–41.
    1. Cerasa A, Gioia MC, Salsone M, Donzuso G, Chiriaco C, Realmuto S, Nicoletti A, Bellavia G, Banco A, D'Amelio M, et al. Neurofunctional correlates of attention rehabilitation in Parkinson's disease: an explorative study. Neurol Sci. 2014;35(8):1173–1180.
    1. Diez-Cirarda M, Ojeda N, Pena J, Cabrera-Zubizarreta A, Lucas-Jimenez O, Gomez-Esteban JC, Gomez-Beldarrain MA, Ibarretxe-Bilbao N. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson's disease: a randomized controlled trial. Brain Imaging Behav. 2016.
    1. Nombela C, Bustillo PJ, Castell PF, Sanchez L, Medina V, Herrero MT. Cognitive rehabilitation in Parkinson's disease: evidence from neuroimaging. Front Neurol. 2011;2:82.
    1. Chan AW, Tetzlaff JM, Altman DG, Dickersin K, Moher D. SPIRIT 2013: new guidance for content of clinical trial protocols. Lancet. 2013;381(9861):91–92.
    1. Scharre DW, Chang SI, Murden RA, Lamb J, Beversdorf DQ, Kataki M, Nagaraja HN, Bornstein RA. Self-administered Gerocognitive examination (SAGE): a brief cognitive assessment instrument for mild cognitive impairment (MCI) and early dementia. Alzheimer Dis Assoc Disord. 2010;24(1):64–71.
    1. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699.
    1. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, Melzer TR, Kirwan J, Keenan R, Wells S, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717–1725.
    1. Fahn S, Elton RL. UPDRS Development Committee A: Unified Parkinson's disease rating scale. In: Fahn S, Marsden CD, Calne DB, Florham Park GM, editors. Recent developments in Parkinson's disease. Volume 2. NJ: Macmillian Healthcare Information; 1987. pp. 293–304.
    1. Voss T, Bahr D, Cummings J, Mills R, Ravina B, Williams H. Performance of a shortened scale for assessment of positive symptoms for Parkinson's disease psychosis. Parkinsonism Relat Disord. 2013;19(3):295–299.
    1. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–571.
    1. Verhage F. Intelligentie en leeftijd: Onderzoek bij Nederlanders van twaalf tot zevenenzeventig jaar: Van Gorcum Assen. 1964.
    1. Hochstenbach JB, den Otter R, Mulder TW. Cognitive recovery after stroke: a 2-year follow-up. Arch Phys Med Rehabil. 2003;84(10):1499–1504.
    1. Devilly GJ, Borkovec TD. Psychometric properties of the credibility/expectancy questionnaire. J Behav Ther Exp Psychiatry. 2000;31(2):73–86.
    1. Buitenweg JIV, van de Ven RM, Prinssen S, Murre JMJ, Ridderinkhof KR. Cognitive flexibility training: a large-scale multimodal adaptive active-control intervention study in healthy older adults. Front Hum Neurosci. 2017;11:529.
    1. van de Ven RM, Buitenweg JI, Schmand B, Veltman DJ, Aaronson JA, Nijboer TC, Kruiper-Doesborgh SJ, van Bennekom CA, Rasquin SM, Ridderinkhof KR, et al. Brain training improves recovery after stroke but waiting list improves equally: a multicenter randomized controlled trial of a computer-based cognitive flexibility training. PLoS One. 2017;12(3):e0172993.
    1. Bouma A, Mulder J, Lindeboom J, Schmand B. Handboek neuropsychologische diagnostiek.-2e herz. dr: Pearson. 2012.
    1. Kulisevsky J, Fernandez de Bobadilla R, Pagonabarraga J, Martinez-Horta S, Campolongo A, Garcia-Sanchez C, Pascual-Sedano B, Ribosa-Nogue R, Villa-Bonomo C. Measuring functional impact of cognitive impairment: validation of the Parkinson's disease cognitive functional rating scale. Parkinsonism Relat Disord. 2013;19(9):812–817.
    1. Broadbent DE, Cooper PF, FitzGerald P, Parkes KR. The cognitive failures questionnaire (CFQ) and its correlates. Br J Clin Psychol. 1982;21(Pt 1):1–16.
    1. Lezak MD, Howieson DB, Loring DW, Fischer JS. Neuropsychological assessment. USA: Oxford University press; 2004.
    1. Litvan I, Goldman JG, Troster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, et al. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society task force guidelines. Mov Disord. 2012;27(3):349–356.
    1. Emre M, Aarsland D, Brown R, Burn DJ, Duyckaerts C, Mizuno Y, Broe GA, Cummings J, Dickson DW, Gauthier S, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–1707.
    1. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059–1069.
    1. Sizemore AE, Bassett DS. Dynamic graph metrics: Tutorial, toolbox, and tale. Neuroimage. 2018;180(Pt B):417–427.
    1. Ahlskog JE. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology. 2011;77(3):288–294.
    1. Ratey JJ, Loehr JE. The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev Neurosci. 2011;22(2):171–185.
    1. Hoehn MM, Yahr MD. Parkinsonism: onset, progression and mortality. Neurology. 1967;17(5):427–442.
    1. Miah IP, Olde Dubbelink KT, Stoffers D, Deijen JB, Berendse HW. Early-stage cognitive impairment in Parkinson's disease and the influence of dopamine replacement therapy. Eur J Neurol. 2012;19(3):510–516.
    1. Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson's disease. Neurosci Biobehav Rev. 2006;30:1–23.
    1. Petrelli A, Kaesberg S, Barbe MT, Timmermann L, Fink GR, Kessler J, Kalbe E. Effects of cognitive training in Parkinson's disease: a randomized controlled trial. Parkinsonism Relat Disord. 2014;20(11):1196–1202.
    1. Team RC . R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna; 2014.
    1. Dauwerse L, Hendrikx A, van de Moosdijk L, Leedekerken W, Dellebeke H, Tulp H, van het Hoofd M, Schipper K, Abma T. Bewogen door onderzoek. Amsterdam: VU medisch centrum; 2012.
    1. Bosboom JL, Stoffers D, Wolters E. Cognitive dysfunction and dementia in Parkinson's disease. J Neural Transm. 2004;111(10–11):1303–1315.

Source: PubMed

3
Subscribe