A Signature of Circulating miRNAs Associated With Fibrous Dysplasia of Bone: the mirDys Study

Mélanie A Legrand, Marjorie Millet, Blandine Merle, Jean-Charles Rousseau, Anaelle Hemmendinger, Evelyne Gineyts, Elisabeth Sornay-Rendu, Pawel Szulc, Olivier Borel, Martine Croset, Roland Chapurlat, Mélanie A Legrand, Marjorie Millet, Blandine Merle, Jean-Charles Rousseau, Anaelle Hemmendinger, Evelyne Gineyts, Elisabeth Sornay-Rendu, Pawel Szulc, Olivier Borel, Martine Croset, Roland Chapurlat

Abstract

Fibrous dysplasia (FD) is a rare bone disease caused by activating mutations of GNAS encoding the Gsα protein, enhancing cyclic adenosine monophosphate (cAMP) production by overstimulation of adenylyl cyclase and impairing osteoblastic differentiation. The clinical presentation ranges from asymptomatic to polyostotic forms with severe disability, explained by the mosaic distribution of the GNAS mutation. Physicians have to deal with the gap of knowledge in FD pathogenesis, the absence of prognostic markers and the lack of specific treatment. The identification of specific biomarkers for FD is an important step to improve the clinical and therapeutic approaches. An epigenetic regulation driven by microRNAs (miRNAs), known as promising biomarkers in bone disease, could be involved in FD. We have sought circulating miRNAs that are differentially expressed in FD patients compared to controls and would reflect dysregulations of osteogenesis-related genes and bone disorder. The global miRNA profiling was performed using Next Generation Sequencing in patient serum collected from a discovery cohort of 20 patients (10 polyostotic and 10 monostotic) and 10 controls. From these, we selected 19 miRNAs for a miRNA validation phase from serum of 82 patients and 82 controls, using real-time qPCR. Discovery screening identified 111 miRNAs differentially expressed in patient serum, after adjusting for the false discovery rate (FDR). Among the 82 patients, 55% were polyostotic, and 73% were women with a mean age of 42 years. Six miRNAs (miR-25-3p, miR-93-5p, miR-182-5p, miR-324-5p, miR-363-3p, and miR-451a) were significantly overexpressed in serum, with FDR <0.05. The expression level of these six miRNAs was not associated with the FD severity. In conclusion, we identified a signature of circulating miRNAs associated with FD. These miRNAs are potential negative regulators of gene expression in bone cell progenitors, suggesting their activity in FD by interfering with osteoblastic and osteoclastic differentiation to impair bone mineralization and remodeling processes. © 2020 American Society for Bone and Mineral Research.

Trial registration: ClinicalTrials.gov NCT03838991.

Keywords: EPIGENETIC; FIBROUS DYSPLASIA OF BONE; GNAS; MCCUNE-ALBRIGHT SYNDROME; MICRORNAS.

© 2020 American Society for Bone and Mineral Research.

References

    1. Chapurlat RD, Meunier PJ. Fibrous dysplasia of bone. Baillieres Best Pract Res Clin Rheumatol. 2000;14(2):385-98.
    1. Weinstein LS. G(s)alpha mutations in fibrous dysplasia and McCune-Albright syndrome. J Bone Miner Res. 2006;21(Suppl 2):P120-4.
    1. Boyce AM, Collins MT. Fibrous dysplasia/McCune-Albright syndrome: a rare, mosaic disease of Gα S activation. Endocr Rev. 2020;41(2):345-70.
    1. Marie P. Cellular and molecular biology of fibrous dysplasia. Ann Pathol. 2001;21(6):489-98.
    1. Yamamoto T, Ozono K, Kasayama S, et al. Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune-Albright syndrome. J Clin Invest. 1996;98(1):30-5.
    1. de Castro LF, Burke AB, Wang HD, et al. Activation of RANK/RANKL/OPG pathway is involved in the pathophysiology of fibrous dysplasia and associated with disease burden. J Bone Miner Res. 2019;34(2):290-4.
    1. Benhamou J, Gensburger D, Messiaen C, Chapurlat R. Prognostic factors from an epidemiologic evaluation of fibrous dysplasia of bone in a modern cohort: the FRANCEDYS study. J Bone Miner Res. 2016;31(12):2167-72.
    1. Collins MT, Kushner H, Reynolds JC, et al. An instrument to measure skeletal burden and predict functional outcome in fibrous dysplasia of bone. J Bone Miner Res. 2005;20(2):219-26.
    1. Guerin Lemaire H, Merle B, Borel O, Gensburger D, Chapurlat R. Serum periostin levels and severity of fibrous dysplasia of bone. Bone. 2019;121:68-71.
    1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97.
    1. Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A. 2007;104(23):9667-72.
    1. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271-82.
    1. Bernstein E, Kim SY, Carmell MA, et al. Dicer is essential for mouse development. Nat Genet. 2003;35(3):215-7.
    1. Sugatani T, Hruska KA. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem. 2009;284(7):4667-78.
    1. Gaur T, Hussain S, Mudhasani R, et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol. 2010;340(1):10-21.
    1. Mizoguchi F, Izu Y, Hayata T, et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem. 2010;109(5):866-75.
    1. Gennari L, Bianciardi S, Merlotti D. MicroRNAs in bone diseases. Osteoporos Int. 2017;28(4):1191-213.
    1. Croset M, Kan C, Clézardin P. Tumour-derived miRNAs and bone metastasis. Bonekey Rep. 2015;4:688.
    1. Puppo M, Taipaleenmäki H, Hesse E, Clézardin P. Non-coding RNAs in bone Remodelling and bone metastasis: mechanisms of action and translational relevance. Br J Pharmacol Forthcoming. Epub. 2019 Aug 18. .
    1. Hesse E, Taipaleenmäki H. MicroRNAs in bone metastasis. Curr Osteoporos Rep. 2019;17(3):122-8.
    1. Ji X, Chen X, Yu X. MicroRNAs in osteoclastogenesis and function: potential therapeutic targets for osteoporosis. Int J Mol Sci. 2016;17(3):349.
    1. Suttamanatwong S. MicroRNAs in bone development and their diagnostic and therapeutic potentials in osteoporosis. Connect Tissue Res. 2017;58(1):90-102.
    1. Seeliger C, Karpinski K, Haug AT, et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res. 2014;29(8):1718-28.
    1. Feurer E, Kan C, Croset M, Sornay-Rendu E, Chapurlat R. Lack of association between select circulating miRNAs and bone mass, turnover, and fractures: data from the OFELY cohort. J Bone Miner Res. 2019;34(6):1074-85.
    1. Chapurlat RD, Orcel P. Fibrous dysplasia of bone and McCune-Albright syndrome. Best Pract Res Clin Rheumatol. 2008;22(1):55-69.
    1. Javaid MK, Boyce A, Appelman-Dijkstra N, et al. Best practice management guidelines for fibrous dysplasia/McCune-Albright syndrome: a consensus statement from the FD/MAS international consortium. Orphanet J Rare Dis. 2019;14(1):139.
    1. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD. Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res. 1997;12(4):683-90.
    1. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425-33.
    1. Nagy H, Sornay-Rendu E, Boutroy S, Vilayphiou N, Szulc P, Chapurlat R. Impaired trabecular and cortical microarchitecture in daughters of women with osteoporotic fracture: the MODAM study. Osteoporos Int. 2013;24(6):1881-9.
    1. Chaitou A, Boutroy S, Vilayphiou N, et al. Association between bone turnover rate and bone microarchitecture in men: the STRAMBO study. J Bone Miner Res. 2010;25(11):2313-23.
    1. Garmire LX, Subramaniam S. Evaluation of normalization methods in mammalian microRNA-Seq data. RNA. 2012;18(6):1279-88.
    1. Huggett JF, Foy CA, Benes V, et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59(6):892-902.
    1. Pickering M-E, Millet M, Rousseau J-C, et al. Selected serum microRNA, abdominal aortic calcification and risk of osteoporotic fracture. PLoS One. 2019;14(5):e0216947.
    1. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139-40.
    1. Liens D, Delmas PD, Meunier PJ. Long-term effects of intravenous pamidronate in fibrous dysplasia of bone. Lancet. 1994;343(8903):953-4.
    1. Chapurlat RD, Hugueny P, Delmas PD, Meunier PJ. Treatment of fibrous dysplasia of bone with intravenous pamidronate: long-term effectiveness and evaluation of predictors of response to treatment. Bone. 2004;35(1):235-42.
    1. Majoor BC, Appelman-Dijkstra NM, Fiocco M, van de Sande MA, Dijkstra PS, Hamdy NA. Outcome of long-term bisphosphonate therapy in McCune-Albright syndrome and polyostotic fibrous dysplasia. J Bone Miner Res. 2017;32(2):264-76.
    1. Boyce AM, Chong WH, Yao J, et al. Denosumab treatment for fibrous dysplasia. J Bone Miner Res. 2012;27(7):1462-70.
    1. Kim KM, Park SJ, Jung S-H, et al. miR-182 is a negative regulator of osteoblast proliferation, differentiation, and skeletogenesis through targeting FoxO1. J Bone Miner Res. 2012;27(8):1669-79.
    1. Inoue K, Deng Z, Chen Y, et al. Bone protection by inhibition of microRNA-182. Nat Commun. 2018;9(1):4108.
    1. Rached M-T, Kode A, Xu L, et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab. 2010;11(2):147-60.
    1. Miller CH, Smith SM, Elguindy M, et al. RBP-J-regulated miR-182 promotes TNF-α-induced osteoclastogenesis. J Immunol. 2016;196(12):4977-86.
    1. Fang T, Wu Q, Zhou L, Mu S, Fu Q. miR-106b-5p and miR-17-5p suppress osteogenic differentiation by targeting Smad5 and inhibit bone formation. Exp Cell Res. 2016;347(1):74-82.
    1. Liu K, Jing Y, Zhang W, et al. Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone. 2017;97:130-8.
    1. Li X, Ji J, Wei W, Liu L. MiR-25 promotes proliferation, differentiation and migration of osteoblasts by up-regulating Rac1 expression. Biomed Pharmacother. 2018;99:622-8.
    1. Huang Y, Ren K, Yao T, et al. MicroRNA-25-3p regulates osteoclasts through nuclear factor I X. Biochem Biophys Res Commun. 2020;522(1):74-80.
    1. Yang L, Cheng P, Chen C, et al. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res. 2012;27(7):1598-606.
    1. Zhang Y, Wei Q-S, Ding W-B, et al. Increased microRNA-93-5p inhibits osteogenic differentiation by targeting bone morphogenetic protein-2. PLoS One. 2017;12(8):e0182678.
    1. Eferl R, Hoebertz A, Schilling AF, et al. The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J. 2004;23(14):2789-99.
    1. Fujiwara T, Uotani K, Yoshida A, et al. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget. 2017;8(20):33375-92.
    1. Ruggieri P, Sim FH, Bond JR, Unni KK. Malignancies in fibrous dysplasia. Cancer. 1994;73(5):1411-24.
    1. Li M, Luo R, Yang W, Zhou Z, Li C. miR-363-3p is activated by MYB and regulates osteoporosis pathogenesis via PTEN/PI3K/AKT signaling pathway. In Vitro Cell Dev Biol Anim. 2019;55(5):376-86.
    1. Woods S, Barter MJ, Elliott HR, et al. miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol. 2019;77:87-100.
    1. Gu H, Wu L, Chen H, et al. Identification of differentially expressed microRNAs in the bone marrow of osteoporosis patients. Am J Transl Res. 2019;11(5):2940-54.
    1. Karvande A, Kushwaha P, Ahmad N, et al. Glucose dependent miR-451a expression contributes to parathyroid hormone mediated osteoblast differentiation. Bone. 2018;117:98-115.
    1. Robinson C, Collins MT, Boyce AM. Fibrous dysplasia/McCune-Albright syndrome: clinical and translational perspectives. Curr Osteoporos Rep. 2016;14(5):178-86.
    1. Kuznetsov SA, Cherman N, Riminucci M, Collins MT, Robey PG, Bianco P. Age-dependent demise of GNAS-mutated skeletal stem cells and “normalization” of fibrous dysplasia of bone. J Bone Miner Res. 2008;23(11):1731-40.
    1. Hart ES, Kelly MH, Brillante B, et al. Onset, progression, and plateau of skeletal lesions in fibrous dysplasia and the relationship to functional outcome. J Bone Miner Res. 2007;22(9):1468-74.
    1. Riminucci M, Robey PG, Saggio I, Bianco P. Skeletal progenitors and the GNAS gene: fibrous dysplasia of bone read through stem cells. J Mol Endocrinol. 2010;45(6):355-64.
    1. Kocijan R, Weigl M, Skalicky S, et al. MicroRNA levels in bone and blood change during bisphosphonate and teriparatide therapy in an animal model of postmenopausal osteoporosis. Bone. 2019;131:115104.
    1. Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - complex signatures for multifactorial diseases? Mol Cell Endocrinol. 2016;432:83-95.

Source: PubMed

3
Subscribe