Effects of Ezetimibe/Simvastatin and Rosuvastatin on Oxidative Stress in Diabetic Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Geannyne Villegas-Rivera, Luis Miguel Román-Pintos, Ernesto Germán Cardona-Muñoz, Oscar Arias-Carvajal, Adolfo Daniel Rodríguez-Carrizalez, Rogelio Troyo-Sanromán, Fermín Paul Pacheco-Moisés, Aldo Moreno-Ulloa, Alejandra Guillermina Miranda-Díaz, Geannyne Villegas-Rivera, Luis Miguel Román-Pintos, Ernesto Germán Cardona-Muñoz, Oscar Arias-Carvajal, Adolfo Daniel Rodríguez-Carrizalez, Rogelio Troyo-Sanromán, Fermín Paul Pacheco-Moisés, Aldo Moreno-Ulloa, Alejandra Guillermina Miranda-Díaz

Abstract

Objective: To evaluate the effects of ezetimibe/simvastatin (EZE/SIMV) and rosuvastatin (ROSUV) on oxidative stress (OS) markers in patients with diabetic polyneuropathy (DPN).

Methods: We performed a randomized, double-blind, placebo-controlled phase III clinical trial in adult patients with Type 2 Diabetes Mellitus (T2DM) and DPN, as evaluated by composite scores and nerve conduction studies (NCS). Seventy-four subjects with T2DM were allocated 1 : 1 : 1 to placebo, EZE/SIMV 10/20 mg, or ROSUV 20 mg for 16 weeks. All patients were assessed before and after treatment: primary outcomes were lipid peroxidation (LPO), and nitric oxide (NO) surrogate levels in plasma; secondary outcomes included NCS, neuropathic symptom scores, and metabolic parameters. Data were expressed as mean ± SD or SEM, frequencies, and percentages; we used nonparametric analysis.

Results: LPO levels were reduced in both statin arms after 16 weeks of treatment (p < 0.05 versus baseline), without changes in the placebo group. NO levels were not significantly affected by statin treatment, although a trend towards significance concerning increased NO levels was noted in both statin arms. No significant changes were observed for the NCS or composite scores.

Discussion: EZE/SIMV and ROSUV are superior to placebo in reducing LPO in subjects with T2DM suffering from polyneuropathy. This trial is registered with NCT02129231.

Figures

Figure 1
Figure 1
Flow diagram of study selection.
Figure 2
Figure 2
Oxidative stress (OS) and vascular function markers. (a) Lipid Peroxidation (LPO) levels in plasma, as assessed by malondialdehyde concentration. (b) Nitric oxide levels in plasma, as assessed by nitrate/nitrite (NOx) concentration. EZE/SIMV, ezetimibe/simvastatin; ROSUV, rosuvastatin. Data is expressed as mean ± SEM, p < 0.05 versus placebo Mann-Whitney U.
Figure 3
Figure 3
Screening levels and changes from screening in (a) neuropathic symptoms score (NSC), (b) neuropathic disability score (NDS), and (c) analog pains scale (APS) score after 16 weeks of treatment. Data is expressed as mean ± SEM, p < 0.05 versus week 0, and ∗∗p < 0.001 versus week 0 (baseline), Wilcoxon matched-pairs signed-rank test.

References

    1. Dyck P. J., Kratz K. M., Karnes J. L., et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester diabetic neuropathy study. Neurology. 1993;43(4):817–824. doi: 10.1212/wnl.43.4.817.
    1. Kamenov Z. A., Traykov L. D. Diabetic somatic neuropathy. Advances in Experimental Medicine & Biology. 2012;771:155–175.
    1. Dyck P. J. Detection, characterization, and staging of polyneuropathy: assessed in diabetics. Muscle & Nerve. 1988;11(1):21–32. doi: 10.1002/mus.880110106.
    1. Dyck P. J., Giannini C. Pathologic alterations in the diabetic neuropathies of humans: a review. Journal of Neuropathology & Experimental Neurology. 1996;55(12):1181–1193. doi: 10.1097/00005072-199612000-00001.
    1. Vincent A. M., Brownlee M., Russell J. W. Oxidative stress and programmed cell death in diabetic neuropathy. Annals of the New York Academy of Sciences. 2002;959:368–383.
    1. Vincent A. M., Russell J. W., Low P., Feldman E. L. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrine Reviews. 2004;25(4):612–628. doi: 10.1210/er.2003-0019.
    1. Russell J. W., Golovoy D., Vincent A. M., et al. High glucose-induced oxidative stress and mitochondrial dysfunction in nuerons. The FASEB Journal. 2002;16(13):1738–1748. doi: 10.1096/fj.01-1027com.
    1. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1993;329(14):977–986. doi: 10.1056/NEJM199309303291401.
    1. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. The Lancet. 1998;352(9131):837–853.
    1. Ismail-Beigi F., Craven T., Banerji M. A., et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. The Lancet. 2010;376(9739):419–430. doi: 10.1016/s0140-6736(10)60576-4.
    1. Vincent A. M., Hinder L. M., Pop-Busui R., Feldman E. L. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. Journal of the Peripheral Nervous System. 2009;14(4):257–267. doi: 10.1111/j.1529-8027.2009.00237.x.
    1. Wiggin T. D., Sullivan K. A., Pop-Busui R., Amato A., Sima A. A. F., Feldman E. L. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 2009;58(7):1634–1640. doi: 10.2337/db08-1771.
    1. Girach A., Manner D., Porta M. Diabetic microvascular complications: can patients at risk be identified? A review. International Journal of Clinical Practice. 2006;60(11):1471–1483. doi: 10.1111/j.1742-1241.2006.01175.x.
    1. Pande M., Hur J., Hong Y., et al. Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: a model of type 2 diabetes. Diabetes. 2011;60(7):1981–1989. doi: 10.2337/db10-1541.
    1. Taylor F., Huffman M. D., Macedo A. F., et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews. 2013;1CD004816
    1. Liao J. K., Laufs U. Pleiotropic effects of statins. Annual Review of Pharmacology & Toxicology. 2005;45:89–118. doi: 10.1146/annurev.pharmtox.45.120403.095748.
    1. Davis T. M. E., Yeap B. B., Davis W. A., Bruce D. G. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia. 2008;51(4):562–566. doi: 10.1007/s00125-007-0919-2.
    1. Franzoni F., Quiñones-Galvan A., Regoli F., Ferrannini E., Galetta F. A comparative study of the in vitro antioxidant activity of statins. International Journal of Cardiology. 2003;90(2-3):317–321. doi: 10.1016/s0167-5273(02)00577-6.
    1. Grosser N., Erdmann K., Hemmerle A., et al. Rosuvastatin upregulates the antioxidant defense protein heme oxygenase-1. Biochemical and Biophysical Research Communications. 2004;325(3):871–876. doi: 10.1016/j.bbrc.2004.10.123.
    1. Resch U., Tatzber F., Budinsky A., Sinzinger H. Reduction of oxidative stress and modulation of autoantibodies against modified low-density lipoprotein after rosuvastatin therapy. British Journal of Clinical Pharmacology. 2006;61(3):262–274. doi: 10.1111/j.1365-2125.2005.02568.x.
    1. England J. D., Gronseth G. S., Franklin G., et al. Distal symmetric polyneuropathy: a definition for clinical research—report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2005;64(2):199–207. doi: 10.1212/01.wnl.0000149522.32823.ea.
    1. Callaghan B. C., Cheng H. T., Stables C. L., Smith A. L., Feldman E. L. Diabetic neuropathy: clinical manifestations and current treatments. The Lancet Neurology. 2012;11(6):521–534. doi: 10.1016/s1474-4422(12)70065-0.
    1. Argoff C. E., Cole B. E., Fishbain D. A., Irving G. A. Diabetic peripheral neuropathic pain: clinical and quality-of-life issues. Mayo Clinic Proceedings. 2006;81(4, supplement):S3–S11. doi: 10.1016/s0025-6196(11)61176-2.
    1. Vinik A. I., Mehrabyan A. Diabetic neuropathies. Medical Clinics of North America. 2004;88(4):947–999. doi: 10.1016/j.mcna.2004.04.009.
    1. Clemens A., Siegel E., Gallwitz B. Global risk management in type 2 diabetes: blood glucose, blood pressure, and lipids—update on the background of the current guidelines. Experimental and Clinical Endocrinology and Diabetes. 2004;112(9):493–503. doi: 10.1055/s-2004-821306.
    1. Zangiabadi N., Shafiee K., Alavi K. H., Assadi A. R., Damavandi M. Atorvastatin treatment improves diabetic polyneuropathy electrophysiological changes in non-insulin dependent diabetic patients: a double blind, randomized clinical trial. Minerva Endocrinologica. 2012;37(2):195–200.
    1. Niki E. Lipid peroxidation products as oxidative stress biomarkers. BioFactors. 2008;34(2):171–180. doi: 10.1002/biof.5520340208.
    1. Halliwell B., Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. American Journal of Clinical Nutrition. 1993;57(5)
    1. Koksal M., Eren M. A., Turan M. N., Sabuncu T. The effects of atorvastatin and rosuvastatin on oxidative stress in diabetic patients. European Journal of Internal Medicine. 2011;22(3):249–253. doi: 10.1016/j.ejim.2010.12.003.
    1. Yoshino G., Tanaka M., Nakano S., et al. Effect of rosuvastatin on concentrations of plasma lipids, urine and plasma oxidative stress markers, and plasma high-sensitivity C-reactive protein in hypercholesterolemic patients with and without type 2 diabetes mellitus: a 12-week, open-label, pilot study. Current Therapeutic Research: Clinical & Experimental. 2009;70(6):439–448. doi: 10.1016/j.curtheres.2009.12.003.
    1. Girona J., La Ville A. E., Solà R., Plana N., Masana L. Simvastatin decreases aldehyde production derived from lipoprotein oxidation. The American Journal of Cardiology. 1999;83(6):846–851. doi: 10.1016/s0002-9149(98)01071-6.
    1. Creager M. A., Lüscher T. F., Cosentino F., Beckman J. A. Diabetes and vascular disease. Pathophysiology, clinical consequences, and medical therapy: part I. Circulation. 2003;108(12):1527–1532. doi: 10.1161/01.cir.0000091257.27563.32.
    1. Liu P.-Y., Liu Y.-W., Lin L.-J., Chen J.-H., Liao J. K. Evidence for statin pleiotropy in humans: differential effects of statins and ezetimibe on Rho-associated coiled-coil containing protein kinase activity, endothelial function, and inflammation. Circulation. 2009;119(1):131–138. doi: 10.1161/circulationaha.108.813311.
    1. John S., Schneider M. P., Delles C., Jacobi J., Schmieder R. E. Lipid-independent effects of statins on endothelial function and bioavailability of nitric oxide in hypercholesterolemic patients. American Heart Journal. 2005;149(3):473.e1–473.e10. doi: 10.1016/j.ahj.2004.06.027.
    1. Koh K. K., Quon M. J., Han S. H., et al. Simvastatin improves flow-mediated dilation but reduces adiponectin levels and insulin sensitivity in hypercholesterolemic patients. Diabetes Care. 2008;31(4):776–782. doi: 10.2337/dc07-2199.

Source: PubMed

3
Subscribe