Cystatin C relates to metabolism in healthy, pubertal adolescents

Niels Ziegelasch, Mandy Vogel, Antje Körner, Eva Koch, Anne Jurkutat, Uta Ceglarek, Katalin Dittrich, Wieland Kiess, Niels Ziegelasch, Mandy Vogel, Antje Körner, Eva Koch, Anne Jurkutat, Uta Ceglarek, Katalin Dittrich, Wieland Kiess

Abstract

Introduction: The cystatin C (CysC) serum level is a marker of glomerular filtration rate and depends on age, gender, and pubertal stage. We hypothesize that CysC might overall reflect energy homeostasis and be regulated by components of the endocrine system and metabolites in pubertal adolescents.

Methods: Serum CysC levels and further possible effector parameters in 5355 fasting, morning venous blood samples from 2035 healthy participants of the LIFE Child cohort study (age 8 to 18 years) were analyzed. Recruitment started in 2011, with probands followed up once a year. Linear univariate and stepwise multivariate regression analyses were performed.

Results: Annual growth rate, serum levels of thyroid hormones, parathyroid hormone, insulin-like growth factor 1, hemoglobin A1c (HbA1c), uric acid, and alkaline phosphatase show relevant and significant associations with CysC serum concentrations (p <0.001). Furthermore, male probands' CysC correlated with the body mass index and testosterone among other sexual hormones. Multivariate analyses revealed that uric acid and HbA1c are associated variables of CysC independent from gender (p <0.001). In males, alkaline phosphatase (p <0.001) is additionally significantly associated with CysC. Thyroid hormones show significant correlations only in multivariate analyses in females (p <0.001).

Conclusions: The described associations strongly suggest an impact of children's metabolism on CysC serum levels. These alterations need to be considered in kidney diagnostics using CysC in adolescents. Additionally, further studies are needed on CysC in children.

Trial registration: ClinicalTrials.gov NCT02550236.

Keywords: Children; Cystatin C; Enzyme; Hormone; Metabolism; Puberty.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Heatmaps showing pairwise correlations between cystatin C and potentially influencing variables in males and females. Abbreviations: ALAT = alanine-aminotransferase, ALP = alkaline phosphatase, ASAT = aspartate-aminotransferase, BMI = body mass index, CI = confidence interval, GGT = gamma glutamyl transferase, FSH = follicle-stimulating hormone, FT3 = free thyroid hormone 3, FT4 = free thyroid hormone 4, HbA1c = hemoglobin A1c, IgG = immunoglobulin G, IGF1 = insulin-like growth factor, LH = luteinizing hormone, n = number of observations, obs = observations, SD = standard deviation, PTH = parathyroid hormone, TSH = thyroid-stimulating hormone. * marks variables with significant correlations in stepwise multivariate analyses (see also Table 4). # marks testosterone as the strongest potentially influencing, nonsignificant variable in multivariate analyses in male subjects. Anthropometric parameters and sexual hormones are listed in the columns; all other biochemical parameters are shown in the rows. Significance levels (p values) are illustrated in colors (0 [brick red], 10-4 [red], 0.001 [light red], 0.01 [orange], 0.05 [yellow], 1 [white]). All analyses were corrected for age and repeated measurements in follow-up examination

References

    1. Brzin J, Popovic T, Turk V, Borchart U, Machleidt W. Human cystatin, a new protein inhibitor of cysteine proteinases. Biochem Biophys Res Commun. 1984;118:103–109. doi: 10.1016/0006-291x(84)91073-8.
    1. Abrahamson M, Olafsson I, Palsdottir A, Ulvsback M, Lundwall A, Jensson O, et al. Structure and expression of the human cystatin C gene. Biochem J. 1990;268:287–294. doi: 10.1042/bj2680287.
    1. Ylinen EA, Ala-Houhala M, Harmoinen AP, Knip M. Cystatin C as a marker for glomerular filtration rate in pediatric patients. Pediatr Nephrol. 1999;13:506–509. doi: 10.1007/s004670050647.
    1. Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H. Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand. 1985;218:499–503. doi: 10.1111/j.0954-6820.1985.tb08880.x.
    1. Tenstad O, Roald AB, Grubb A, Aukland K. Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest. 1996;56:409–414. doi: 10.3109/00365519609088795.
    1. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A. Cystatin C as a marker of GFR--history, indications, and future research. Clin Biochem. 2005;38:1–8. doi: 10.1016/j.clinbiochem.2004.09.025.
    1. Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindstrom V, et al. Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem. 1994;40:1921–1926. doi: 10.1093/clinchem/40.10.1921.
    1. Mussap M, Ruzzante N, Varagnolo M, Plebani M. Quantitative automated particle-enhanced immunonephelometric assay for the routinary measurement of human cystatin C. Clin Chem Lab Med. 1998;36:859–865. doi: 10.1515/CCLM.1998.151.
    1. Yata N, Uemura O, Honda M, Matsuyama T, Ishikura K, Hataya H, et al. Reference ranges for serum cystatin C measurements in Japanese children by using 4 automated assays. Clin Exp Nephrol. 2013;17:872–876. doi: 10.1007/s10157-013-0784-x.
    1. Groesbeck D, Kottgen A, Parekh R, Selvin E, Schwartz GJ, Coresh J, et al. Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol. 2008;3:1777–1785. doi: 10.2215/CJN.00840208.
    1. Ziegelasch N, Vogel M, Muller E, Tremel N, Jurkutat A, Loffler M, et al. Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage. Pediatr Nephrol. 2019;34:449–457. doi: 10.1007/s00467-018-4087-z.
    1. Miliku K, Bakker H, Dorresteijn EM, Cransberg K, Franco OH, Felix JF, et al. Childhood estimates of glomerular filtration rate based on creatinine and cystatin C: importance of body composition. Am J Nephrol. 2017;45:320–326. doi: 10.1159/000463395.
    1. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65:1416–1421. doi: 10.1111/j.1523-1755.2004.00517.x.
    1. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75:652–660. doi: 10.1038/ki.2008.638.
    1. Bokenkamp A, Laarman CARC, Braam KI, van Wijk JAE, Kors WA, Kool M, et al. Effect of corticosteroid therapy on low-molecular weight protein markers of kidney function. Clin Chem. 2007;53:2219–2221. doi: 10.1373/clinchem.2007.094946.
    1. Risch L, Herklotz R, Blumberg A, Huber AR. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin Chem. 2001;47:2055–2059. doi: 10.1093/clinchem/47.11.2055.
    1. Wiesli P, Schwegler B, Spinas GA, Schmid C. Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta Int J Clin Chem. 2003;338:87–90. doi: 10.1016/j.cccn.2003.07.022.
    1. Schmid C, Ghirlanda C, Zwimpfer C, Tschopp O, Zuellig RA, Niessen M. Cystatin C in adipose tissue and stimulation of its production by growth hormone and triiodothyronine in 3T3-L1 cells. Mol Cell Endocrinol. 2019;482:28–36. doi: 10.1016/j.mce.2018.12.004.
    1. Kotajima N, Yanagawa Y, Aoki T, Tsunekawa K, Morimura T, Ogiwara T, et al. Influence of thyroid hormones and transforming growth factor-beta1 on cystatin C concentrations. J Int Med Res. 2010;38:1365–1373. doi: 10.1177/147323001003800418.
    1. Sze L, Bernays RL, Zwimpfer C, Wiesli P, Brandle M, Schmid C. Impact of Growth Hormone on Cystatin C. Nephron Extra. 2013;3:118–124. doi: 10.1159/000356464.
    1. Yasueda T, Abe Y, Shiba M, Kamo Y, Seto Y. A new insight into cystatin C contained in milk basic protein to bone metabolism: effects on osteoclasts and osteoblastic MC3T3-E1 cells in vitro. Anim Sci J Nihon Chikusan Gakkaiho. 2018;89:1027–1032. doi: 10.1111/asj.13005.
    1. Lerner UH, Grubb A. Human cystatin C, a cysteine proteinase inhibitor, inhibits bone resorption in vitro stimulated by parathyroid hormone and parathyroid hormone-related peptide of malignancy. J Bone Miner Res. 1992;7:433–440. doi: 10.1002/jbmr.5650070411.
    1. Harada M, Izawa A, Hidaka H, Nakanishi K, Terasawa F, Motoki H, et al. Importance of cystatin C and uric acid levels in the association of cardiometabolic risk factors in Japanese junior high school students. J Cardiol. 2017;69:222–227. doi: 10.1016/j.jjcc.2016.03.013.
    1. Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Ann Intern Med. 2007;147:W163–W194. doi: 10.7326/0003-4819-147-8-200710160-00010-w1.
    1. Poulain T, Baber R, Vogel M, Pietzner D, Kirsten T, Jurkutat A, et al. The LIFE Child study: a population-based perinatal and pediatric cohort in Germany. Eur J Epidemiol. 2017;32:145–158. doi: 10.1007/s10654-016-0216-9.
    1. Quante M, Hesse M, Dohnert M, Fuchs M, Hirsch C, Sergeyev E, et al. The LIFE child study: a life course approach to disease and health. BMC Public Health. 2012;12:1021. doi: 10.1186/1471-2458-12-1021.
    1. Dathan-Stumpf A, Vogel M, Hiemisch A, Thiery J, Burkhardt R, Kratzsch J, et al. Pediatric reference data of serum lipids and prevalence of dyslipidemia: Results from a population-based cohort in Germany. Clin Biochem. 2016;49:740–749. doi: 10.1016/j.clinbiochem.2016.02.010.
    1. Bussler S, Vogel M, Pietzner D, Harms K, Buzek T, Penke M, et al. New pediatric percentiles of liver enzyme serum levels (alanine aminotransferase, aspartate aminotransferase, γ-glutamyltransferase): Effects of age, sex, body mass index, and pubertal stage. Hepatology. 2018;68:1319–1330. doi: 10.1002/hep.29542.
    1. Rieger K, Vogel M, Engel C, Ceglarek U, Harms K, Wurst U, et al. Does physiological distribution of blood parameters in children depend on socioeconomic status? Results of a German cross-sectional study. BMJ Open. 2018;8:e019143. doi: 10.1136/bmjopen-2017-019143.
    1. Hirschel J, Vogel M, Baber R, Garten A, Beuchel C-F, Dietz Y, et al. Relation of Whole Blood Amino Acid and 3 Acylcarnitine Metabolome to Age, Sex, BMI, Puberty, 4 and Metabolic Markers in Children and Adolescents. Metabolites. 2020;10:149. doi: 10.3390/metabo10040149.
    1. Core Team R. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016.
    1. Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01.
    1. Marmarinos A, Garoufi A, Panagoulia A, Dimou S, Drakatos A, Paraskakis I, et al. Cystatin-C levels in healthy children and adolescents: Influence of age, gender, body mass index and blood pressure. Clin Biochem. 2016;49:150–153. doi: 10.1016/j.clinbiochem.2015.10.012.
    1. Alosco ML, Spitznagel MB, Strain G, Devlin M, Cohen R, Crosby RD, et al. The effects of cystatin C and alkaline phosphatase changes on cognitive function. J Neurol Sci. 2014;345:176–180. doi: 10.1016/j.jns.2014.07.037.
    1. Veldhuis JD, Frystyk J, Iranmanesh A, Orskov H. Testosterone and estradiol regulate free insulin-like growth factor I (IGF-I), IGF binding protein 1 (IGFBP-1), and dimeric IGF-I/IGFBP-1 concentrations. J Clin Endocrinol Metab. 2005;90:2941–2947. doi: 10.1210/jc.2004-1314.
    1. Phillip M, Palese T, Hernandez ER, Roberts CTJ, LeRoith D, Kowarski AA. Effect of testosterone on insulin-like growth factor-I (IGF-I) and IGF-I receptor gene expression in the hypophysectomized rat. Endocrinology. 1992;130:2865–2870. doi: 10.1210/endo.130.5.1315260.
    1. Chen T-Y, Hsieh Y-S, Yang C-C, Wang C-P, Yang S-F, Cheng Y-W, et al. Relationship between matrix metalloproteinase-2 activity and cystatin C levels in patients with hepatic disease. Clin Biochem. 2005;38:632–638. doi: 10.1016/j.clinbiochem.2005.03.005.
    1. Takeuchi M, Fukuda Y, Nakano I, Katano Y, Hayakawa T. Elevation of serum cystatin C concentrations in patients with chronic liver disease. Eur J Gastroenterol Hepatol. 2001;13:951–955. doi: 10.1097/00042737-200108000-00013.
    1. Chu S-C, Wang C-P, Chang Y-H, Hsieh Y-S, Yang S-F, Su J-M, et al. Increased cystatin C serum concentrations in patients with hepatic diseases of various severities. Clin Chim Acta. 2004;341:133–138. doi: 10.1016/j.cccn.2003.11.011.
    1. Ladero JM, Cardenas MC, Ortega L, Gonzalez-Pino A, Cuenca F, Morales C, et al. Serum cystatin C: a non-invasive marker of liver fibrosis or of current liver fibrogenesis in chronic hepatitis C? Ann Hepatol. 2012;11:648–651. doi: 10.1016/S1665-2681(19)31437-1.
    1. Wei L, Ye X, Pei X, Wu J, Zhao W. Diagnostic accuracy of serum cystatin C in chronic kidney disease: a meta-analysis. Clin Nephrol. 2015;84:86–94. doi: 10.5414/CN108525.
    1. Onerli Salman D, Siklar Z, Cullas Ilarslan EN, Ozcakar ZB, Kocaay P, Berberoglu M. Evaluation of Renal Function in Obese Children and Adolescents Using Serum Cystatin C Levels, Estimated Glomerular Filtration Rate Formulae and Proteinuria: Which is most Useful? J Clin Res Pediatr Endocrinol. 2019;11:46–54. doi: 10.4274/jcrpe.galenos.2018.2018.0046.
    1. Bjork J, Nyman U, Berg U, Delanaye P, Dubourg L, Goffin K, et al. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children. Pediatr Nephrol. 2019;34:1087–1098. doi: 10.1007/s00467-018-4185-y.

Source: PubMed

3
Subscribe