Renal and Vascular Effects of Combined SGLT2 and Angiotensin-Converting Enzyme Inhibition

Yuliya Lytvyn, Karen Kimura, Nuala Peter, Vesta Lai, Josephine Tse, Leslie Cham, Bruce A Perkins, Nima Soleymanlou, David Z I Cherney, Yuliya Lytvyn, Karen Kimura, Nuala Peter, Vesta Lai, Josephine Tse, Leslie Cham, Bruce A Perkins, Nima Soleymanlou, David Z I Cherney

Abstract

Background: The cardiorenal effects of sodium-glucose cotransporter 2 inhibition (empagliflozin 25 mg QD) combined with angiotensin-converting enzyme inhibition (ramipril 10 mg QD) were assessed in this mechanistic study in patients with type 1 diabetes with potential renal hyperfiltration.

Methods: Thirty patients (out of 31 randomized) completed this double-blind, placebo-controlled, crossover trial. Recruitment was stopped early because of an unexpectedly low proportion of patients with hyperfiltration. Measurements were obtained after each of the 6 treatment phases over 19 weeks: (1) baseline without treatment, (2) 4-week run-in with ramipril treatment alone, (3) 4-week combined empagliflozin-ramipril treatment, (4) a 4-week washout, (5) 4-week combined placebo-ramipril treatment, and (6) 1-week follow-up. The primary end point was glomerular filtration rate (GFR) after combination treatment with empagliflozin-ramipril compared with placebo-ramipril. GFR was corrected for ramipril treatment alone before randomization. At the end of study phase, the following outcomes were measured under clamped euglycemia (4 to 6 mmol/L): inulin (GFR) and para-aminohippurate (effective renal plasma flow) clearances, tubular sodium handling, ambulatory blood pressure, arterial stiffness, heart rate variability, noninvasive cardiac output monitoring, plasma and urine biochemistry, markers of the renin-angiotensin-aldosterone system, and oxidative stress.

Results: Combination treatment with empagliflozin-ramipril resulted in an 8 mL/min/1.73 m2 lower GFR compared with placebo-ramipril treatment (P=0.0061) without significant changes to effective renal plasma flow. GFR decrease was accompanied by a 21.3 mL/min lower absolute proximal fluid reabsorption rate (P=0.0092), a 3.1 mmol/min lower absolute proximal sodium reabsorption rate (P=0.0056), and a 194 ng/mmol creatinine lower urinary 8-isoprostane level (P=0.0084) relative to placebo-ramipril combination treatment. Sodium-glucose cotransporter 2 inhibitor/angiotensin-converting enzyme inhibitor combination treatment resulted in additive blood pressure-lowering effects (clinic systolic blood pressure lower by 4 mm Hg [P=0.0112]; diastolic blood pressure lower by 3 mm Hg [P=0.0032]) in conjunction with a 94.5 dynes × sex/cm5 lower total peripheral resistance (P=0.0368). There were no significant changes observed to ambulatory blood pressure, arterial stiffness, heart rate variability, or cardiac output with the addition of empagliflozin.

Conclusions: Adding sodium-glucose cotransporter 2 inhibitor treatment to angiotensin-converting enzyme inhibitor resulted in an expected GFR dip, suppression of oxidative stress markers, additive declines in blood pressure and total peripheral resistance. These changes are consistent with a protective physiologic profile characterized by the lowering of intraglomerular pressure and related cardiorenal risk when adding a sodium-glucose cotransporter 2 inhibitor to conservative therapy.

Registration: URL: https://www.

Clinicaltrials: gov; Unique identifier: NCT02632747.

Keywords: angiotensin-converting enzyme inhibitors; glomerular filtration rate; hemodynamics; sodium-glucose transporter 2 inhibitors.

Figures

Figure 1.
Figure 1.
Postulated mechanisms in normal physiology and hyperfiltration in early stages of nephropathy and after combined inhibition of SGLT2 and RAAS. A, Under physiologic conditions, tubuloglomerular feedback (TGF) signaling maintains stable glomerular filtration rate (GFR) by modulation of preglomerular arteriole tone. In cases of conditional increases in GFR, the macula densa within the juxtaglomerular apparatus senses an increase in distal tubular sodium delivery and adjusts GFR through TGF accordingly. Neurohormonal signaling using the renin-angiotensin-aldosterone system (RAAS) contributes to maintenance of stable GFR by modulating postglomerular arteriole tone. B, Under chronic hyperglycemic conditions during diabetes, increased proximal sodium-glucose cotransporter 2 (SGLT2)–mediated reabsorption of sodium (Na+) and glucose impairs this feedback mechanism. Thus, despite increased GFR, the macula densa is exposed to lowered sodium concentrations and results in dilation of the afferent intrarenal arteriole. Increased activation of the renin-angiotensin-aldosterone neurohormonal system in diabetes causes constriction at the efferent intrarenal arteriole. Together, impairment of TGF and neurohormonal signaling likely leads to inadequate arteriole tone at the afferent and efferent arterioles and renal perfusion is increased. C, SGLT2 inhibition with empagliflozin treatment blocks proximal tubule glucose and sodium reabsorption, which leads to increased sodium delivery to the macula densa. This condition restores TGF by means of appropriate modulation of arteriolar tone (e.g., afferent vasoconstriction). Blockade of the RAAS with an angiotensin-converting enzyme (ACE) inhibitor, ramipril, leads to efferent vasodilation. The overall effect of afferent vasocontraction with SGLT2 inhibition and efferent vasodilation with ACE inhibition reduces renal plasma flow and hyperfiltration. Modified from Cherney et al.
Figure 2.
Figure 2.
Changes in glomerular filtration rate, absolute proximal fluid reabsorption rate, absolute proximal sodium reabsorption rate, systolic blood pressure, diastolic blood pressure, and total peripheral resistance during screening subtracted from randomization and placebo subtracted from empagliflozin in patients with type 1 diabetes at baseline and in response to ramipril treatment after addition of empagliflozin or placebo. Changes in (A) glomerular filtration rate (GFR), (B) absolute proximal fluid reabsorption rate, (C) absolute proximal sodium reabsorption rate, (D) systolic blood pressure (SYSBP), (E) diastolic blood pressure (DIABP), and (F) total peripheral resistance (TPR) during screening subtracted from randomization and placebo subtracted from empagliflozin in patients with type 1 diabetes at baseline and in response to ramipril treatment after addition of empagliflozin or placebo.
Figure 3.
Figure 3.
Changes in plasma renin concentration, urine 8-isoprostane, and urine cyclic guanosine monophosphate during screening subtracted from randomization and placebo subtracted from empagliflozin in patients with type 1 diabetes at baseline and in response to ramipril treatment after addition of empagliflozin or placebo. Changes in (A) plasma renin concentration, (B) urine 8-isoprostane, and (C) urine cyclic guanosine monophosphate during screening subtracted from randomization and placebo subtracted from empagliflozin in patients with type 1 diabetes at baseline and in response to ramipril treatment after addition of empagliflozin or placebo.

References

    1. McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, Pratley R, Greenberg M, Wang S, Huyck S, et al. . Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 2021;6:148–158. doi: 10.1001/jamacardio.2020.4511
    1. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, Edwards R, Agarwal R, Bakris G, Bull S, et al. . Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744
    1. Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, et al. . Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–1446. doi: 10.1056/NEJMoa2024816
    1. Musso G, Gambino R, Cassader M, Pagano G. A novel approach to control hyperglycemia in type 2 diabetes: sodium glucose co-transport (SGLT) inhibitors: systematic review and meta-analysis of randomized trials. Ann Med. 2012;44:375–393. doi: 10.3109/07853890.2011.56018
    1. Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat Rev Endocrinol. 2012;8:495–502. doi: 10.1038/nrendo.2011.243
    1. Mudaliar S, Armstrong DA, Mavian AA, O’Connor-Semmes R, Mydlow PK, Ye J, Hussey EK, Nunez DJ, Henry RR, Dobbins RL. Remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2, improves serum glucose profiles in type 1 diabetes. Diabetes Care. 2012;35:2198–2200. doi: 10.2337/dc12-0508
    1. Sochett EB, Cherney DZ, Curtis JR, Dekker MG, Scholey JW, Miller JA. Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. J Am Soc Nephrol. 2006;17:1703–1709. doi: 10.1681/ASN.2005080872
    1. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, Cella C, Ferrari S, Stucchi N, Parvanova A, et al. . Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35:2061–2068. doi: 10.2337/dc11-2189
    1. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009;52:691–697. doi: 10.1007/s00125-009-1268-0
    1. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol. 2012;302:R75–R83. doi: 10.1152/ajpregu.00357.2011
    1. Kidokoro K, Cherney DZI, Bozovic A, Nagasu H, Satoh M, Kanda E, Sasaki T, Kashihara N. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation. 2019;140:303–315. doi: 10.1161/CIRCULATIONAHA.118.037418
    1. Arakawa K, Ishihara T, Oku A, Nawano M, Ueta K, Kitamura K, Matsumoto M, Saito A. Improved diabetic syndrome in C57BL/KsJ-db/db mice by oral administration of the Na(+)-glucose cotransporter inhibitor T-1095. Br J Pharmacol. 2001;132:578–586. doi: 10.1038/sj.bjp.0703829
    1. Kojima N, Williams JM, Takahashi T, Miyata N, Roman RJ. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J Pharmacol Exp Ther. 2013;345:464–472. doi: 10.1124/jpet.113.203869
    1. Malatiali S, Francis I, Barac-Nieto M. Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp Diabetes Res. 2008;2008:305403. doi: 10.1155/2008/305403
    1. Skrtic M, Cherney DZ. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr Opin Nephrol Hypertens. 2015;24:96–103. doi: 10.1097/MNH.0000000000000084
    1. Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, et al. . Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–597. doi: 10.1161/CIRCULATIONAHA.113.005081
    1. Cherney DZ, Miller JA, Scholey JW, Bradley TJ, Slorach C, Curtis JR, Dekker MG, Nasrallah R, Hebert RL, Sochett EB. The effect of cyclooxygenase-2 inhibition on renal hemodynamic function in humans with type 1 diabetes. Diabetes. 2008;57:688–695. doi: 10.2337/db07-1230
    1. Miller JA. Impact of hyperglycemia on the renin angiotensin system in early human type 1 diabetes mellitus. J Am Soc Nephrol. 1999;10:1778–1785. doi: 10.1681/ASN.V1081778
    1. Yang GK, Maahs DM, Perkins B, Cherney DZI. Renal hyperfiltration and systemic blood pressure in patients with uncomplicated type 1 diabetes mellitus. PLoS One. 2013;8:e68908. doi: 10.1371/journal.pone.0068908
    1. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, et al. . Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–597. doi: 10.1161/CIRCULATIONAHA.113.005081
    1. Montanari A, Biggi A, Cabassi A, Pelloni I, Pigazzani F, Pinelli S, Pelà G, Musiari L, Cherney DZ. Renal hemodynamic response to L-arginine in uncomplicated, type 1 diabetes mellitus: the role of buffering anions and tubuloglomerular feedback. Am J Physiol Renal Physiol. 2012;303:F648–F658. doi: 10.1152/ajprenal.00149.2012
    1. Koomans HA, Boer WH, Dorhout Mees EJ. Evaluation of lithium clearance as a marker of proximal tubule sodium handling. Kidney Int. 1989;36:2–12. doi: 10.1038/ki.1989.153
    1. Montanari A, Vallisa D, Ragni G, Guerra A, Colla R, Novarini A, Coruzzi P. Abnormal renal responses to calcium entry blockade in normotensive offspring of hypertensive parents. Hypertension. 1988;12:498–505. doi: 10.1161/01.hyp.12.5.498
    1. Marik PE. Noninvasive cardiac output monitors: a state-of the-art review. J Cardiothorac Vasc Anesth. 2013;27:121–134. doi: 10.1053/j.jvca.2012.03.022
    1. Lytvyn Y, Har R, Locke A, Lai V, Fong D, Advani A, Perkins BA, Cherney DZI. Renal and vascular effects of uric acid lowering in normouricemic patients with uncomplicated type 1 diabetes. Diabetes. 2017;66:1939–1949. doi: 10.2337/db17-0168
    1. Lytvyn Y, Bjornstad P, Lovshin JA, Boulet G, Farooqi MA, Lai V, Tse J, Cham L, Lovblom LE, Weisman A, et al. . Renal hemodynamic function and RAAS activation over the natural history of type 1 diabetes. Am J Kidney Dis. 2019;73:786–796. doi: 10.1053/j.ajkd.2018.12.034
    1. Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, et al. . The renal hemodynamic effect of SGLT2 inhibition in patients with type 1 diabetes. Circulation. 2014;129:587–597. doi: 10.1161/CIRCULATIONAHA.113.005081
    1. van Bommel EJM, Muskiet MHA, van Baar MJB, Tonneijck L, Smits MM, Emanuel AL, Bozovic A, Danser AHJ, Geurts F, Hoorn EJ, et al. . The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int. 2020;97:202–212. doi: 10.1016/j.kint.2019.09.013
    1. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, Broedl UC. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014;2:369–384. doi: 10.1016/S2213-8587(13)70208-0
    1. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, Figueroa K, Wajs E, Usiskin K, Meininger G. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15:463–473. doi: 10.1111/dom.12090
    1. Cefalu WT, Leiter LA, Yoon KH, Langslet G, Arias P, Xie J, Balis DA, Millington D, Vercruysse F, Canovatchel W, et al. . Canagliflozin demonstrates durable glycemic improvements over 104 weeks versus glimepiride in subjects with type 2 diabetes mellitus on metformin. Diabetes. 2013;62(Suppl 1):65 LB.
    1. Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Abdul Gafor AH, Greasley PJ, Laverman GD, Lim SK, Di Tanna GL, Reich HN, et al. . Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020;8:582–593. doi: 10.1016/S2213-8587(20)30162-5
    1. Turkstra E, Braam B, Koomans HA. Nitric oxide release as an essential mitigating step in tubuloglomerular feedback: observations during intrarenal nitric oxide clamp. J Am Soc Nephrol. 1998;9:1596–1603. doi: 10.1681/ASN.V991596
    1. Thorup C, Persson AE. Inhibition of locally produced nitric oxide resets tubuloglomerular feedback mechanism. Am J Physiol. 1994;267:F606–F611. doi: 10.1152/ajprenal.1994.267.4.F606
    1. Cherney DZ, Reich HN, Jiang S, Har R, Nasrallah R, Hebert RL, Lai V, Scholey JW, Sochett EB. Hyperfiltration and the effect of nitric oxide inhibition on renal and endothelial function in humans with uncomplicated type 1 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2012;303:R710–R718. doi: 10.1152/ajpregu.00286.2012
    1. Cherney DZ, Scholey JW, Miller JA. Insights into the regulation of renal hemodynamic function in diabetic mellitus. Curr Diabetes Rev. 2008;4:280–290. doi: 10.2174/157339908786241151
    1. Ichihara A, Hayashi M, Koura Y, Tada Y, Sugaya T, Hirota N, Saruta T. Blunted tubuloglomerular feedback by absence of angiotensin type 1A receptor involves neuronal NOS. Hypertension. 2002;40:934–939. doi: 10.1161/01.hyp.0000041220.88322.6d
    1. Kim Y, Babu AR. Clinical potential of sodium-glucose cotransporter 2 inhibitors in the management of type 2 diabetes. Diabetes Metab Syndr Obes. 2012;5:313–327. doi: 10.2147/DMSO.S22545
    1. Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2:e001007. doi: 10.1136/bmjopen-2012-001007
    1. Lawler PR, Liu H, Frankfurter C, Lovblom LE, Lytvyn Y, Burger D, Burns KD, Brinc D, Cherney DZI. Changes in cardiovascular biomarkers associated with the sodium-glucose cotransporter 2 (SGLT2) inhibitor ertugliflozin in patients with chronic kidney disease and type 2 diabetes. Diabetes Care. 2021;44:e45–e47. doi: 10.2337/dc20-2265
    1. Scholtes RA, Muskiet MHA, van Baar MJB, Hesp AC, Greasley PJ, Karlsson C, Hammarstedt A, Arya N, van Raalte DH, Heerspink HJL. Natriuretic effect of two weeks of dapagliflozin treatment in patients with type 2 diabetes and preserved kidney function during standardized sodium intake: results of the DAPASALT trial. Diabetes Care. 2021;44:440–447. doi: 10.2337/dc20-2604
    1. Cherney DZI, Perkins BA, Soleymanlou N, Har R, Fagan NM, Johansen OE, Woerle HJ, Eynatten M, Broedl UC. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol. 2014;13:28–35. doi: 10.1186/1475-2840-13-28

Source: PubMed

3
Subscribe