Urine concentration ability is reduced to the same degree in adult dominant polycystic kidney disease compared with other chronic kidney diseases in the same CKD-stage and lower THAN in healthy control subjects - a CASE control study

M H Malmberg, F H Mose, E B Pedersen, J N Bech, M H Malmberg, F H Mose, E B Pedersen, J N Bech

Abstract

Background: Concentration of the urine is primarily regulated via vasopressin dependent aquaporin-2 water channels in the apical membrane of kidney principal cells. It is unclear whether urine concentration ability in ADPKD differs from other patients with similar degree of impaired renal function (non-ADPKD patients). The purpose of this case control study was to measure urine concentration ability in ADPKD patients compared to non-ADPKD patients and healthy controls.

Methods: A seventeen hour long water deprivation test was carried out in 17 ADPKD patients (CKD I-IV), 16 non-ADPKD patients (CKD I-IV), and 18 healthy controls. Urine was collected in 4 consecutive periods during water deprivation (12 h, 1 h, 2 h and 2 h, respectively) and analyzed for osmolality (u-Osm), output (UO), fractional excretion of sodium (FENa), aquaporin2 (u-AQP2) and ENaC (u-ENaC). Blood samples were drawn trice (after 13-, 15-, and 17 h after water deprivation) for analyses of osmolality (p-Osm), vasopressin (p-AVP), and aldosterone (p-Aldo).

Results: U-Osm was significantly lower and FENa significantly higher in both ADPKD patients and non-ADPKD patients compared to healthy controls during the last three periods of water deprivation. During the same periods, UO was higher and secretion rates of u-AQP2 and u-ENaC were lower and at the same level in the two groups of patients compared to controls. P-AVP and p-Osm did not differ significantly between the three groups. P-Aldo was higher in both groups of patients than in controls.

Conclusions: Urine concentration ability was reduced to the same extent in patients with ADPKD and other chronic kidney diseases with the same level of renal function compared to healthy controls. The lower urine excretion of AQP2 and ENaC suggests that the underlying mechanism may be a reduced tubular response to vasopressin and aldosterone.

Trial registration: Current Controlled Trial NCT04363554 , date of registration: 20.08.2017.

Keywords: Aldosterone; Angiotensin II; Blood pressure; Chronic kidney disease; Epithelial sodium channel; GFR; Osmolality; Polycystic kidney disease; Renin; Sodium; Vasopressin; aquaporin2.

Conflict of interest statement

The authors declare that they have no competing interests.

References

    1. Nielsen S, Kwon TH, Christensen BM, Promeneur D, Frokiaer J, Marples D. Physiology and pathophysiology of renal aquaporins. J Am Soc Nephrol. 1999;10(3):647–663.
    1. Kwon TH, Nielsen J, Knepper MA, Frokiaer J, Nielsen S. Angiotensin II AT1 receptor blockade decreases vasopressin-induced water reabsorption and AQP2 levels in NaCl-restricted rats. Am J Physiol Renal Physiol. 2005;288(4):F673–F684. doi: 10.1152/ajprenal.00304.2004.
    1. Lee YJ, Song IK, Jang KJ, Nielsen J, Frokiaer J, Nielsen S, Kwon TH. Increased AQP2 targeting in primary cultured IMCD cells in response to angiotensin II through AT1 receptor. Am J Physiol Renal Physiol. 2007;292(1):F340–F350. doi: 10.1152/ajprenal.00090.2006.
    1. Wong NL, Tsui JK. Angiotensin II upregulates the expression of vasopressin V2 mRNA in the inner medullary collecting duct of the rat. Metabolism. 2003;52(3):290–295. doi: 10.1053/meta.2003.50047.
    1. Wang W, Li C, Nejsum LN, Li H, Kim SW, Kwon TH, Jonassen TE, Knepper MA, Thomsen K, Frokiaer J, Nielsen S. Biphasic effects of ANP infusion in conscious, euvolumic rats: roles of AQP2 and ENaC trafficking. Am J Physiol Renal Physiol. 2006;290(2):F530–F541. doi: 10.1152/ajprenal.00070.2005.
    1. de Seigneux S, Nielsen J, Olesen ET, Dimke H, Kwon TH, Frokiaer J, Nielsen S. Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol. 2007;293(1):F87–F99. doi: 10.1152/ajprenal.00431.2006.
    1. Lee J, Yoo K, Kim SW, Jung KH, Ma SK, Lee YK, Kim WY, Kim J, Choi KC. Decreased expression of aquaporin water channels in denervated rat kidney. Nephron Physiol. 2006;103(4):p170–p178. doi: 10.1159/000092918.
    1. Argent NB, Burrell LM, Goodship TH, Wilkinson R, Baylis PH. Osmoregulation of thirst and vasopressin release in severe chronic renal failure. Kidney Int. 1991;39(2):295–300. doi: 10.1038/ki.1991.36.
    1. Pedersen EB, Thomsen IM, Lauridsen TG: Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study. BMC Nephrol 2010, 11:26–2369-11-26.
    1. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287–1301. doi: 10.1016/S0140-6736(07)60601-1.
    1. Schrier RW, Brosnahan G, Cadnapaphornchai MA, Chonchol M, Friend K, Gitomer B, Rossetti S. Predictors of autosomal dominant polycystic kidney disease progression. J Am Soc Nephrol. 2014;25(11):2399–2418. doi: 10.1681/ASN.2013111184.
    1. Nakajima A, Lu Y, Kawano H, Horie S, Muto S. Association of arginine vasopressin surrogate marker urinary copeptin with severity of autosomal dominant polycystic kidney disease (ADPKD) Clin Exp Nephrol. 2015;19(6):1199–1205. doi: 10.1007/s10157-015-1101-7.
    1. Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19(1):102–108. doi: 10.1681/ASN.2007060688.
    1. Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 2000;57(4):1460–1471. doi: 10.1046/j.1523-1755.2000.00991.x.
    1. Meijer E, Rook M, Tent H, Navis G, van der Jagt EJ, de Jong PE, Gansevoort RT. Early renal abnormalities in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5(6):1091–1098. doi: 10.2215/CJN.00360110.
    1. Zittema D, Boertien WE, van Beek AP, Dullaart RP, Franssen CF, de Jong PE, Meijer E, Gansevoort RT. Vasopressin, copeptin, and renal concentrating capacity in patients with autosomal dominant polycystic kidney disease without renal impairment. Clin J Am Soc Nephrol. 2012;7(6):906–913. doi: 10.2215/CJN.11311111.
    1. Zittema D, Casteleijn NF, Bakker SJ, Boesten LS, Duit AA, Franssen CF, Gaillard CA, Gansevoort RT. Urine concentrating capacity, vasopressin and Copeptin in ADPKD and IgA nephropathy patients with renal impairment. PLoS One. 2017;12(1):e0169263. doi: 10.1371/journal.pone.0169263.
    1. Ravine D, Gibson RN, Walker RG, Sheffield LJ, Kincaid-Smith P, Danks DM. Evaluation of ultrasonographic diagnostic criteria for autosomal dominant polycystic kidney disease 1. Lancet. 1994;343(8901):824–827. doi: 10.1016/S0140-6736(94)92026-5.
    1. Pedersen RS, Bentzen H, Bech JN, Pedersen EB. Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. Am J Physiol Renal Physiol. 2001;280(5):F860–F867. doi: 10.1152/ajprenal.2001.280.5.F860.
    1. Graffe CC, Bech JN, Pedersen EB. Effect of high and low sodium intake on urinary aquaporin-2 excretion in healthy humans. Am J Physiol Renal Physiol. 2012;302:F264–F275. doi: 10.1152/ajprenal.00442.2010.
    1. Matthesen SK, Larsen T, Lauridsen TG, Vase H, Gjorup PH, Nykjaer KM, et al. Effect of amiloride and spironolactone on renal tubular function, ambulatory blood pressure, and pulse wave velocity in healthy participants in a double-blinded, randomized, placebo-controlled, crossover trial. Clin Exp Hypertens. 2012;34:588–600. doi: 10.3109/10641963.2012.681730.
    1. Al Therwani S, Malmberg MES, Rosenbaek JB, Bech JN, Pedersen EB. Effect oftolvaptan on renal handling of water and sodium, GFR and central hemodynamics in autosomal dominant polycystic kidney disease during inhibition of the nitricoxide system: a randomized, placebo-controlled, double blind, crossover study. BMC Nephrol. 2017;18(1):268. doi: 10.1186/s12882-017-0686-3.
    1. Pedersen EB, Danielsen H, Spencer ES. Effect of indapamide on renal plasma flow, glomerular filtration rate and arginine vasopressin in plasma in essential hypertension. Eur J Clin Pharmacol. 1984;26:543–547. doi: 10.1007/BF00543482.
    1. Pedersen EB, Eiskjaer H, Madsen B, Danielsen H, Egeblad M, Nielsen CB. Effect of captopril on renal extraction of renin, angiotensin II, atrial natriuretic peptide and vasopressin, and renal vein renin ratio in patients with arterial hypertension and unilateral renal artery disease. Nephrol Dial Transplant. 1993;8:1064–1070.
    1. Miyazawa Y, Mikami S, Yamamoto K, Sakai M, Saito T, Yamamoto T, Ishibashi K, Sasaki S. AQP2 in human urine is predominantly localized to exosomes with preserved water channel activities. Clin Exp Nephrol. 2018;22:782–788. doi: 10.1007/s10157-018-1538-6.
    1. Street JM, Birkhoff W, Menzies RI, Webb DJ, Bailey MA, Dear JW. Exosomal transmission of functional aquaporin 2 in kidney cortical collecting duct cells. J Physiol. 2011;589:6119–6127. doi: 10.1113/jphysiol.2011.220277.
    1. Nameta M, Saijo Y, Ohmoto Y, Katsuragi K, Yamamoto K, Yamamoto T, Ishibashi K, Sasaki S. Disruption of membranes of extracellular vesicles is necessary for ELISA determination of urine AQP2: proof of disruption and epitopes of AQP2 antibodies. Int J Mol Sci. 2016;17(10):1634. doi: 10.3390/ijms17101634.
    1. Pedersen EB, Lamm LU, Albertsen K, Madsen M, Bruun-Petersen G, Henningsen K, Friedrich U, Magnusson K. Familial cranial diabetes insipidus: a report of five families. Genetic, diagnostic and therapeutic aspects. Q J Med. 1985;57:883–896.
    1. Rittig S, Knudsen UB, Norgaard JP, Pedersen EB, Djurhuus JC. Abnormal diurnal rhythm of plasma vasopressin and urinary output in patients with enuresis. Am J Phys. 1989;256:F664–F671.
    1. Rittig S, Robertson GL, Siggaard C, Kovacs L, Gregersen N, Nyborg J, Pedersen EB. Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet. 1996;58:107–117.
    1. Veizis EI, Carlin CR, Cotton CU. Decreased amiloride-sensitive Na absorption in collecting duct principal cells isolated from BPK ARPKD mice. Am J Physiol Renal Physiol. 2004;286:F244–F254. doi: 10.1152/ajprenal.00169.2003.
    1. Berl T, Katz FH, Henrich WL, de Torrente A, Schrier RW. Role of aldosterone in the control of sodium excretion in patients with advanced chronic renal failure. Kidney Int. 1978;14(3):228–235. doi: 10.1038/ki.1978.114.
    1. Hene RJ, Boer P, Koomans HA, Mees EJ. Plasma aldosterone concentrations in chronic renal disease. Kidney Int. 1982;21(1):98–101. doi: 10.1038/ki.1982.14.
    1. Hamrahian SM, Falkner B. Hypertension in chronic kidney disease. Adv Exp Med Biol. 2017;956:307–325. doi: 10.1007/5584_2016_84.

Source: PubMed

3
Subscribe