The When, What & How of Measuring Vitamin D Metabolism in Clinical Medicine

Niek F Dirks, Mariëtte T Ackermans, Paul Lips, Renate T de Jongh, Marc G Vervloet, Robert de Jonge, Annemieke C Heijboer, Niek F Dirks, Mariëtte T Ackermans, Paul Lips, Renate T de Jongh, Marc G Vervloet, Robert de Jonge, Annemieke C Heijboer

Abstract

We now have the ability to measure a number of different vitamin D metabolites with very accurate methods. The most abundant vitamin D metabolite, 25-hydroxyvitamin D, is currently the best marker for overall vitamin D status and is therefore most commonly measured in clinical medicine. The added value of measuring metabolites beyond 25-hydroxyvitamin D, like 1,25-, and 24,25-dihydroxyvitamin D is not broadly appreciated. Yet, in some more complicated cases, these metabolites may provide just the information needed for a legitimate diagnosis. The problem at present, is knowing when to measure, what to measure and how to measure. For 25-hydroxyvitamin D, the most frequently used automated immunoassays do not meet the requirements of today's standards for certain patient groups and liquid chromatography-tandem mass spectrometry is the desired method of choice in these individuals. The less frequently measured 1,25-dihydroxyvitamin D metabolite enables us to identify a number of conditions, including 1α-hydroxylase deficiency, hereditary vitamin D-resistant rickets and a number of granulomatous diseases or lymphoproliferative diseases accompanied by hypercalcaemia. Furthermore, it discriminates between the FGF23-mediated and non-FGF23-mediated hypophosphatemic syndromes. The 24,25-dihydroxyvitamin D metabolite has proven its value in the diagnosis of idiopathic infantile hypercalcaemia and has the potential of having value in identifying other diseases. For both metabolites, the understanding of the origin of differences between assays is limited and requires further attention. Nonetheless, in every way, appropriate measurement of vitamin D metabolism in the clinical laboratory hinges eminently on the comprehension of the value of the different metabolites, and the importance of the choice of method.

Keywords: 1,25-dihydroxyvitamin D; 24,25-dihydroxyvitamin D; 25-hydroxyvitamin D; LC-MS/MS; immunoassay; metabolism; vitamin D.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Vitamin D metabolism. From the production of vitamin D in the human skin or ingestion from certain vitamin D-rich foods to the final metabolisation into active (1,25(OH)2D) and largely inactive metabolites (24,25(OH)2D and 1,24,25(OH)3D). 25(OH)D: 25-hydroxyvitamin D; 1,25(OH)2D: 1,25-dihydroxyvitamin D; 24,25(OH)2D: 24,25-dihydroxyvitamin D; 1,24,25(OH)3D: 1,24,25-trihydroxyvitamin D.

References

    1. Heaney R.P., Recker R.R., Grote J., Horst R.L., Armas L.A. Vitamin D(3) is more potent than vitamin D(2) in humans. J. Clin. Endocrinol. Metab. 2011;96:E447–E452. doi: 10.1210/jc.2010-2230.
    1. Kamao M., Tatematsu S., Hatakeyama S., Sakaki T., Sawada N., Inouye K., Ozono K., Kubodera N., Reddy G.S., Okano T. C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J. Biol. Chem. 2004;279:15897–15907. doi: 10.1074/jbc.M311473200.
    1. Saito H., Kusano K., Kinosaki M., Ito H., Hirata M., Segawa H., Miyamoto K., Fukushima N. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J. Biol. Chem. 2003;278:2206–2211. doi: 10.1074/jbc.M207872200.
    1. Bikle D. Nonclassic actions of vitamin D. J. Clin. Endocrinol. Metab. 2009;94:26–34. doi: 10.1210/jc.2008-1454.
    1. Liu P.T., Stenger S., Li H., Wenzel L., Tan B.H., Krutzik S.R., Ochoa M.T., Schauber J., Wu K., Meinken C., et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–1773. doi: 10.1126/science.1123933.
    1. Lips P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2007;22:1668–1671. doi: 10.1359/jbmr.070716.
    1. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553.
    1. Holick M.F. Vitamin D status: Measurement, interpretation, and clinical application. Ann. Epidemiol. 2009;19:73–78. doi: 10.1016/j.annepidem.2007.12.001.
    1. Hollis B.W. Assessment and interpretation of circulating 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in the clinical environment. Endocrinol. Metab. Clin. North Am. 2010;39:271–286. doi: 10.1016/j.ecl.2010.02.012.
    1. Bouillon R., Van Schoor N.M., Gielen E., Boonen S., Mathieu C., Vanderschueren D., Lips P. Optimal vitamin D status: A critical analysis on the basis of evidence-based medicine. J. Clin. Endocrinol. Metab. 2013;98:E1283–E1304. doi: 10.1210/jc.2013-1195.
    1. Ross A.C., Manson J.E., Abrams S.A., Aloia J.F., Brannon P.M., Clinton S.K., Durazo-Arvizu R.A., Gallagher J.C., Gallo R.L., Jones G., et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011;96:53–58. doi: 10.1210/jc.2010-2704.
    1. Manson J.E., Brannon P.M., Rosen C.J., Taylor C.L. Vitamin D deficiency—Is there really a pandemic? N. Engl. J. Med. 2016;375:1817–1820. doi: 10.1056/NEJMp1608005.
    1. Bischoff-Ferrari H.A., Giovannucci E., Willett W.C., Dietrich T., Dawson-Hughes B. Estimation of optimal serum concentrations of 25-hydroxyvitamin d for multiple health outcomes. Am. J. Clin. Nutr. 2006;84:18–28. doi: 10.1093/ajcn/84.1.18.
    1. Norman A.W., Bouillon R., Whiting S.J., Vieth R., Lips P. 13th workshop consensus for vitamin D nutritional guidelines. J. Steroid Biochem. Mol. Biol. 2007;103:204–205. doi: 10.1016/j.jsbmb.2006.12.071.
    1. Ross A.C. The 2011 report on dietary reference intakes for calcium and vitamin D. Public Health Nutr. 2011;14:938–939. doi: 10.1017/S1368980011000565.
    1. Holick M.F., Binkley N.C., Bischoff-Ferrari H.A., Gordon C.M., Hanley D.A., Heaney R.P., Murad M.H., Weaver C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011;96:1911–1930. doi: 10.1210/jc.2011-0385.
    1. Dirks N.F., Martens F., Vanderschueren D., Billen J., Pauwels S., Ackermans M.T., Endert E., Heijer M.D., Blankenstein M.A., Heijboer A.C. Determination of human reference values for serum total 1,25-dihydroxyvitamin D using an extensively validated 2D ID-UPLC-MS/MS method. J. Steroid Biochem. Mol. Biol. 2016;164:127–133. doi: 10.1016/j.jsbmb.2015.12.003.
    1. Zalewski A., Ma N.S., Legeza B., Renthal N., Fluck C.E., Pandey A.V. Vitamin D-dependent rickets type 1 caused by mutations in CYP27B1 affecting protein interactions with adrenodoxin. J. Clin. Endocrinol. Metab. 2016;101:3409–3418. doi: 10.1210/jc.2016-2124.
    1. Francis F., Hennig S., Korn B., Reinhardrdt R., de Jong P., Poustka A., Lehrach H., Rowe P.S.N., Goulding J.N., Summerfield T., et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with x-linked hypophosphatemic rickets. The HYP consortium. Nat. Genet. 1995;11:130–136. doi: 10.1038/ng1095-130.
    1. Imel E.A., DiMeglio L.A., Hui S.L., Carpenter T.O., Econs M.J. Treatment of x-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J. Clin. Endocrinol. Metab. 2010;95:1846–1850. doi: 10.1210/jc.2009-1671.
    1. Chong W.H., Molinolo A.A., Chen C.C., Collins M.T. Tumor-induced osteomalacia. Endocr.-Relat. Cancer. 2011;18:R53–R77. doi: 10.1530/ERC-11-0006.
    1. Nagata Y., Imanishi Y., Ishii A., Kurajoh M., Motoyama K., Morioka T., Naka H., Mori K., Miki T., Emoto M., et al. Evaluation of bone markers in hypophosphatemic rickets/osteomalacia. Endocrine. 2011;40:315–317. doi: 10.1007/s12020-011-9512-z.
    1. Consortium A. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 2000;26:345–348.
    1. White K.E., Carn G., Lorenz-Depiereux B., Benet-Pages A., Strom T.M., Econs M.J. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 2001;60:2079–2086. doi: 10.1046/j.1523-1755.2001.00064.x.
    1. Levy-Litan V., Hershkovitz E., Avizov L., Leventhal N., Bercovich D., Chalifa-Caspi V., Manor E., Buriakovsky S., Hadad Y., Goding J., et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am. J. Hum. Genet. 2010;86:273–278. doi: 10.1016/j.ajhg.2010.01.010.
    1. Rafaelsen S.H., Raeder H., Fagerheim A.K., Knappskog P., Carpenter T.O., Johansson S., Bjerknes R. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J. Bone Miner. Res. 2013;28:1378–1385. doi: 10.1002/jbmr.1850.
    1. Riminucci M., Collins M.T., Fedarko N.S., Cherman N., Corsi A., White K.E., Waguespack S., Gupta A., Hannon T., Econs M.J., et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Investig. 2003;112:683–692. doi: 10.1172/JCI18399.
    1. Farrow E.G., Davis S.I., Mooney S.D., Beighton P., Mascarenhas L., Gutierrez Y.R., Pitukcheewanont P., White K.E. Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. Am. J. Med. Genet. Part A. 2006;140:537–539. doi: 10.1002/ajmg.a.31106.
    1. Avitan-Hersh E., Tatur S., Indelman M., Gepstein V., Shreter R., Hershkovitz D., Brick R., Bergman R., Tiosano D. Postzygotic HRAS mutation causing both keratinocytic epidermal nevus and thymoma and associated with bone dysplasia and hypophosphatemia due to elevated FGF23. J. Clin. Endocrinol. Metab. 2014;99:E132–E136. doi: 10.1210/jc.2013-2813.
    1. Gupta A., Dwivedi A., Patel P., Gupta S. Hypophosphatemic osteomalacia in von recklinghausen neurofibromatosis: Case report and literature review. Indian J. Radiol. Imaging. 2015;25:63–66. doi: 10.4103/0971-3026.150155.
    1. Brownstein C.A., Adler F., Nelson-Williams C., Iijima J., Li P., Imura A., Nabeshima Y., Reyes-Mugica M., Carpenter T.O., Lifton R.P. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl. Acad. Sci. USA. 2008;105:3455–3460. doi: 10.1073/pnas.0712361105.
    1. Brown W.W., Juppner H., Langman C.B., Price H., Farrow E.G., White K.E., McCormick K.L. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with jansen’s metaphyseal chondrodysplasia. J. Clin. Endocrinol. Metab. 2009;94:17–20. doi: 10.1210/jc.2008-0220.
    1. Chanakul A., Zhang M.Y., Louw A., Armbrecht H.J., Miller W.L., Portale A.A., Perwad F. FGF-23 regulates CYP27B1 transcription in the kidney and in extra-renal tissues. PLoS ONE. 2013;8:e72816. doi: 10.1371/journal.pone.0072816.
    1. Lorenz-Depiereux B., Benet-Pages A., Eckstein G., Tenenbaum-Rakover Y., Wagenstaller J., Tiosano D., Gershoni-Baruch R., Albers N., Lichtner P., Schnabel D., et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet. 2006;78:193–201. doi: 10.1086/499410.
    1. Tieder M., Modai D., Shaked U., Samuel R., Arie R., Halabe A., Maor J., Weissgarten J., Averbukh Z., Cohen N., et al. “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N. Engl. J. Med. 1987;316:125–129. doi: 10.1056/NEJM198701153160302.
    1. Goto S., Fujii H., Kono K., Watanabe K., Nakai K., Nishi S. Serum FGF23 levels may not be associated with serum phosphate and 1,25-dihydroxyvitamin D levels in patients with fanconi syndrome–induced hypophosphatemia. Clin. Kidney J. 2016;9:677–681. doi: 10.1093/ckj/sfw086.
    1. Adams J.S., Hewison M. Extrarenal expression of the 25-hydroxyvitamin d-1-hydroxylase. Arch. Biochem. Biophys. 2012;523:95–102. doi: 10.1016/j.abb.2012.02.016.
    1. Donovan P.J., Sundac L., Pretorius C.J., d’Emden M.C., McLeod D.S. Calcitriol-mediated hypercalcemia: Causes and course in 101 patients. J. Clin. Endocrinol. Metab. 2013;98:4023–4029. doi: 10.1210/jc.2013-2016.
    1. Abreu M.T., Kantorovich V., Vasiliauskas E.A., Gruntmanis U., Matuk R., Daigle K., Chen S., Zehnder D., Lin Y.C., Yang H., et al. Measurement of vitamin D levels in inflammatory bowel disease patients reveals a subset of crohn’s disease patients with elevated 1,25-dihydroxyvitamin D and low bone mineral density. Gut. 2004;53:1129–1136. doi: 10.1136/gut.2003.036657.
    1. Karakelides H., Geller J.L., Schroeter A.L., Chen H., Behn P.S., Adams J.S., Hewison M., Wermers R.A. Vitamin D-mediated hypercalcemia in slack skin disease: Evidence for involvement of extrarenal 25-hydroxyvitamin D 1alpha-hydroxylase. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2006;21:1496–1499. doi: 10.1359/jbmr.060608.
    1. Jones G., Strugnell S.A., DeLuca H.F. Current understanding of the molecular actions of vitamin D. Physiol. Rev. 1998;78:1193–1231. doi: 10.1152/physrev.1998.78.4.1193.
    1. St-Arnaud R., Glorieux F.H. 24,25-dihydroxyvitamin D—Active metabolite or inactive catabolite? Endocrinology. 1998;139:3371–3374. doi: 10.1210/endo.139.8.6185.
    1. St-Arnaud R. Novel findings about 24,25-dihydroxyvitamin D: An active metabolite? Curr. Opin. Nephrol. Hypertens. 1999;8:435–441. doi: 10.1097/00041552-199907000-00007.
    1. Wagner D., Hanwell H.E., Schnabl K., Yazdanpanah M., Kimball S., Fu L., Sidhom G., Rousseau D., Cole D.E., Vieth R. The ratio of serum 24,25-dihydroxyvitamin D(3) to 25-hydroxyvitamin D(3) is predictive of 25-hydroxyvitamin D(3) response to vitamin D(3) supplementation. J. Steroid Biochem. Mol. Biol. 2011;126:72–77. doi: 10.1016/j.jsbmb.2011.05.003.
    1. Kaufmann M., Gallagher J.C., Peacock M., Schlingmann K.P., Konrad M., DeLuca H.F., Sigueiro R., Lopez B., Mourino A., Maestro M., et al. Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J. Clin. Endocrinol. Metab. 2014;99:2567–2574. doi: 10.1210/jc.2013-4388.
    1. Schlingmann K.P., Kaufmann M., Weber S., Irwin A., Goos C., John U., Misselwitz J., Klaus G., Kuwertz-Broking E., Fehrenbach H., et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 2011;365:410–421. doi: 10.1056/NEJMoa1103864.
    1. Dinour D., Beckerman P., Ganon L., Tordjman K., Eisenstein Z., Holtzman E.J. Loss-of-function mutations of CYP24A1, the vitamin D 24-hydroxylase gene, cause long-standing hypercalciuric nephrolithiasis and nephrocalcinosis. J. Urol. 2013;190:552–557. doi: 10.1016/j.juro.2013.02.3188.
    1. Sayers J., Hynes A.M., Srivastava S., Dowen F., Quinton R., Datta H.K., Sayer J.A. Successful treatment of hypercalcaemia associated with a CYP24A1 mutation with fluconazole. Clin. Kidney J. 2015;8:453–455. doi: 10.1093/ckj/sfv028.
    1. Nesterova G., Malicdan M.C., Yasuda K., Sakaki T., Vilboux T., Ciccone C., Horst R., Huang Y., Golas G., Introne W., et al. 1,25-(OH)2D-24 hydroxylase (CYP24A1) deficiency as a cause of nephrolithiasis. Clin. J. Am. Soc. Nephrol. CJASN. 2013;8:649–657. doi: 10.2215/CJN.05360512.
    1. Molin A., Baudoin R., Kaufmann M., Souberbielle J.C., Ryckewaert A., Vantyghem M.C., Eckart P., Bacchetta J., Deschenes G., Kesler-Roussey G., et al. CYP24A1 mutations in a cohort of hypercalcemic patients: Evidence for a recessive trait. J. Clin. Endocrinol. Metab. 2015;100:E1343–E1352. doi: 10.1210/jc.2014-4387.
    1. Cashman K.D., Hayes A., Galvin K., Merkel J., Jones G., Kaufmann M., Hoofnagle A.N., Carter G.D., Durazo-Arvizu R.A., Sempos C.T. Significance of serum 24,25-dihydroxyvitamin D in the assessment of vitamin D status: A double-edged sword? Clin. Chem. 2015;61:636–645. doi: 10.1373/clinchem.2014.234955.
    1. Depreter B., Heijboer A.C., Langlois M.R. Accuracy of three automated 25-hydroxyvitamin D assays in hemodialysis patients. Clin. Chim. Acta Int. J. Clin. Chem. 2013;415:255–260. doi: 10.1016/j.cca.2012.10.056.
    1. Ong L., Saw S., Sahabdeen N.B., Tey K.T., Ho C.S., Sethi S.K. Current 25-hydroxyvitamin D assays: Do they pass the test? Clin. Chim. Acta Int. J. Clin. Chem. 2012;413:1127–1134. doi: 10.1016/j.cca.2012.03.009.
    1. Farrell C.J., Martin S., McWhinney B., Straub I., Williams P., Herrmann M. State-of-the-art vitamin D assays: A comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods. Clin. Chem. 2012;58:531–542. doi: 10.1373/clinchem.2011.172155.
    1. Heijboer A.C., Blankenstein M.A., Kema I.P., Buijs M.M. Accuracy of 6 routine 25-hydroxyvitamin D assays: Influence of vitamin d binding protein concentration. Clin. Chem. 2012;58:543–548. doi: 10.1373/clinchem.2011.176545.
    1. Wise S.A., Phinney K.W., Tai S.S., Camara J.E., Myers G.L., Durazo-Arvizu R., Tian L., Hoofnagle A.N., Bachmann L.M., Young I.S., et al. Baseline assessment of 25-hydroxyvitamin D assay performance: A vitamin D standardization program (VDSP) interlaboratory comparison study. J. AOAC Int. 2017;100:1244–1252. doi: 10.5740/jaoacint.17-0258.
    1. Cavalier E., Lukas P., Bekaert A.C., Peeters S., Le Goff C., Yayo E., Delanaye P., Souberbielle J.C. Analytical and clinical evaluation of the new Fujirebio Lumipulse® G non-competitive assay for 25(OH)-vitamin D and three immunoassays for 25(OH)D in healthy subjects, osteoporotic patients, third trimester pregnant women, healthy African subjects, hemodialyzed and intensive care patients. Clin. Chem. Lab. Med. 2016;54:1347–1355.
    1. Elsenberg E., Ten Boekel E., Huijgen H., Heijboer A.C. Standardization of automated 25-hydroxyvitamin D assays: How successful is it? Clin. Biochem. 2017;50:1126–1130. doi: 10.1016/j.clinbiochem.2017.06.011.
    1. Freeman J., Wilson K., Spears R., Shalhoub V., Sibley P. Influence of vitamin d binding protein on accuracy of 25-hydroxyvitamin D measurement using the advia centaur vitamin d total assay. Int. J. Endocrinol. 2014;2014:691679.
    1. Hsu S.A., Soldo J., Gupta M. Evaluation of two automated immunoassays for 25-OH vitamin D: Comparison against LC-MS/MS. J. Steroid Biochem. Mol. Biol. 2013;136:139–145. doi: 10.1016/j.jsbmb.2012.11.005.
    1. Janssen M.J., Wielders J.P., Bekker C.C., Boesten L.S., Buijs M.M., Heijboer A.C., van der Horst F.A., Loupatty F.J., van den Ouweland J.M. Multicenter comparison study of current methods to measure 25-hydroxyvitamin D in serum. Steroids. 2012;77:1366–1372. doi: 10.1016/j.steroids.2012.07.013.
    1. Chouiali A., Mallet P.L., Fink G., Biron S., Langlois M.F. Comparison of two methods for measuring 25-OH vitamin D in the follow-up of patients after bilio-pancreatic diversion bariatric surgery. Clin. Biochem. 2017;50:210–216. doi: 10.1016/j.clinbiochem.2016.11.010.
    1. Brock A.T., Strickland S.W., Bazydlo L.A.L., Haverstick D.M. An underestimation of 25-OH vitamin D in patients with renal disease by the abbott architect immunoassay. J. Appl. Lab. Med. AACC Publ. 2017;2:449–451.
    1. Shu I., Pina-Oviedo S., Quiroga-Garza G., Meng Q.H., Wang P. Influence of vitamin D2 percentage on accuracy of 4 commercial total 25-hydroxyvitamin D assays. Clin. Chem. 2013;59:1273–1275. doi: 10.1373/clinchem.2013.206128.
    1. Tolan N.V., Yoon E.J., Brady A.R., Horowitz G.L. Price of high-throughput 25-hydroxyvitamin D immunoassays: Frequency of inaccurate results. J. Appl. Lab. Med. AACC Publ. 2017;2 doi: 10.1373/jalm.2017.024323.
    1. Le Goff C., Peeters S., Crine Y., Lukas P., Souberbielle J.C., Cavalier E. Evaluation of the cross-reactivity of 25-hydroxyvitamin D2 on seven commercial immunoassays on native samples. Clin. Chem. Lab. Med. 2012;50:2031–2032. doi: 10.1515/cclm-2012-0164.
    1. Carter G.D., Jones J.C., Shannon J., Williams E.L., Jones G., Kaufmann M., Sempos C. 25-hydroxyvitamin D assays: Potential interference from other circulating vitamin D metabolites. J. Steroid Biochem. Mol. Biol. 2016;164:134–138. doi: 10.1016/j.jsbmb.2015.12.018.
    1. Dowling K.G., Hull G., Sundvall J., Lamberg-Allardt C., Cashman K.D. Improved accuracy of an tandem liquid chromatography-mass spectrometry method measuring 24R,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D metabolites in serum using unspiked controls and its application to determining cross-reactivity of a chemiluminescent microparticle immunoassay. J. Chromatogr. A. 2017;1497:102–109.
    1. Burdette C.Q., Camara J.E., Nalin F., Pritchett J., Sander L.C., Carter G.D., Jones J., Betz J.M., Sempos C.T., Wise S.A. Establishing an accuracy basis for the vitamin D external quality assessment scheme (DEQAS) J. AOAC Int. 2017;100:1277–1287. doi: 10.5740/jaoacint.17-0306.
    1. Ooms N., van Daal H., Beijers A.M., Gerrits G.P., Semmekrot B.A., van den Ouweland J.M. Time-course analysis of 3-epi-25-hydroxyvitamin D3 shows markedly elevated levels in early life, particularly from vitamin D supplementation in preterm infants. Pediatr. Res. 2016;79:647–653. doi: 10.1038/pr.2015.251.
    1. Van den Ouweland J.M., Beijers A.M., van Daal H. Overestimation of 25-hydroxyvitamin D3 by increased ionisation efficiency of 3-epi-25-hydroxyvitamin D3 in LC-MS/MS methods not separating both metabolites as determined by an LC-MS/MS method for separate quantification of 25-hydroxyvitamin D3, 3-epi-25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014;967:195–202.
    1. Carter G.D. Accuracy of 25-hydroxyvitamin D assays: Confronting the issues. Curr. Drug Targets. 2011;12:19–28. doi: 10.2174/138945011793591608.
    1. Fabregat-Cabello N., Farre-Segura J., Huyghebaert L., Peeters S., Le Goff C., Souberbielle J.-C., Cavalier É. A fast and simple method for simultaneous measurements of 25(OH)D, 24,25(OH)2D and the vitamin D metabolite ratio (VMR) in serum samples by LC-MS/MS. Clin. Chim. Acta. 2017;473:116–123. doi: 10.1016/j.cca.2017.08.024.
    1. Jenkinson C., Taylor A.E., Hassan-Smith Z.K., Adams J.S., Stewart P.M., Hewison M., Keevil B.G. High throughput LC-MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1014:56–63. doi: 10.1016/j.jchromb.2016.01.049.
    1. Muller M.J., Stokes C.S., Lammert F., Volmer D.A. Chemotyping the distribution of vitamin D metabolites in human serum. Sci. Rep. 2016;6:21080. doi: 10.1038/srep21080.
    1. Van den Ouweland J.M., Beijers A.M., van Daal H. Fast separation of 25-hydroxyvitamin D3 from 3-epi-25-hydroxyvitamin D3 in human serum by liquid chromatography-tandem mass spectrometry: Variable prevalence of 3-epi-25-hydroxyvitamin D3 in infants, children, and adults. Clin. Chem. 2011;57:1618–1619. doi: 10.1373/clinchem.2011.170282.
    1. Carter G.D., Jones J.C. Use of a common standard improves the performance of liquid chromatography-tandem mass spectrometry methods for serum 25-hydroxyvitamin-D. Ann. Clin. Biochem. 2009;46:79–81. doi: 10.1258/acb.2008.008135.
    1. Dirks N.F., Vesper H.W., van Herwaarden A.E., van den Ouweland J.M., Kema I.P., Krabbe J.G., Heijboer A.C. Various calibration procedures result in optimal standardization of routinely used 25(OH)D ID-LC-MS/MS methods. Clin. Chim. Acta Int. J. Clin. Chem. 2016;462:49–54. doi: 10.1016/j.cca.2016.08.016.
    1. Hawkes C.P., Schnellbacher S., Singh R.J., Levine M.A. 25-hydroxyvitamin D can interfere with a common assay for 1,25-dihydroxyvitamin D in vitamin D intoxication. J. Clin. Endocrinol. Metab. 2015;100:2883–2889. doi: 10.1210/jc.2015-2206.
    1. Strathmann F.G., Laha T.J., Hoofnagle A.N. Quantification of 1alpha,25-dihydroxy vitamin D by immunoextraction and liquid chromatography-tandem mass spectrometry. Clin. Chem. 2011;57:1279–1285. doi: 10.1373/clinchem.2010.161174.
    1. Kimball S.M., Vieth R. A comparison of automated methods for the quantitation of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. Clin. Biochem. 2007;40:1305–1310. doi: 10.1016/j.clinbiochem.2007.07.015.
    1. Zittermann A., Ernst J.B., Becker T., Dreier J., Knabbe C., Gummert J.F., Kuhn J. Measurement of circulating 1,25-dihydroxyvitamin D: Comparison of an automated method with a liquid chromatography tandem mass spectrometry method. Int. J. Anal. Chem. 2016;2016:8501435. doi: 10.1155/2016/8501435.
    1. Valcour A., Zierold C., Podgorski A.L., Olson G.T., Wall J.V., DeLuca H.F., Bonelli F. A novel, fully-automated, chemiluminescent assay for the detection of 1,25-dihydroxyvitamin D in biological samples. J. Steroid Biochem. Mol. Biol. 2016;164:120–126. doi: 10.1016/j.jsbmb.2015.08.005.
    1. Miller N., Gruson D. Implementation of automated testing for 1,25-dihydroxyvitamin D: Return of experience from a core-laboratory. Clin. Biochem. 2016;49:298–301. doi: 10.1016/j.clinbiochem.2015.10.017.
    1. Pauwels S., Jans I., Billen J., Heijboer A., Verstuyf A., Carmeliet G., Mathieu C., Maestro M., Waelkens E., Evenepoel P., et al. 1beta,25-dihydroxyvitamin D3: A new vitamin d metabolite in human serum. J. Steroid Biochem. Mol. Biol. 2017;173:341–348. doi: 10.1016/j.jsbmb.2017.02.004.
    1. Duan X., Weinstock-Guttman B., Wang H., Bang E., Li J., Ramanathan M., Qu J. Ultrasensitive quantification of serum vitamin D metabolites using selective solid-phase extraction coupled to microflow liquid chromatography and isotope-dilution mass spectrometry. Anal. Chem. 2010;82:2488–2497. doi: 10.1021/ac902869y.
    1. Hedman C.J., Wiebe D.A., Dey S., Plath J., Kemnitz J.W., Ziegler T.E. Development of a sensitive LC/MS/MS method for vitamin D metabolites: 1,25 dihydroxyvitamin D2&3 measurement using a novel derivatization agent. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014;953–954:62–67.
    1. Wang Z., Senn T., Kalhorn T., Zheng X.E., Zheng S., Davis C.L., Hebert M.F., Lin Y.S., Thummel K.E. Simultaneous measurement of plasma vitamin D(3) metabolites, including 4beta,25-dihydroxyvitamin D(3), using liquid chromatography-tandem mass spectrometry. Anal. Biochem. 2011;418:126–133. doi: 10.1016/j.ab.2011.06.043.
    1. Casetta B., Jans I., Billen J., Vanderschueren D., Bouillon R. Development of a method for the quantification of 1alpha,25(OH)2-vitamin D3 in serum by liquid chromatography tandem mass spectrometry without derivatization. Eur. J. Mass Spectrom. 2010;16:81–89. doi: 10.1255/ejms.1024.
    1. Fang H., Yu S., Cheng Q., Cheng X., Han J., Qin X., Xia L., Jiang X., Qiu L. Determination of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in human serum using liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1027:19–26. doi: 10.1016/j.jchromb.2016.04.034.
    1. Kissmeyer A.M., Sonne K. Sensitive analysis of 1alpha,25-dihydroxyvitamin D3 in biological fluids by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 2001;935:93–103. doi: 10.1016/S0021-9673(01)00985-2.
    1. Yuan C., Kosewick J., He X., Kozak M., Wang S. Sensitive measurement of serum 1alpha,25-dihydroxyvitamin D by liquid chromatography/tandem mass spectrometry after removing interference with immunoaffinity extraction. Rapid Commun. Mass Spectrom. 2011;25:1241–1249. doi: 10.1002/rcm.4988.
    1. Tang J.C.Y., Nicholls H., Piec I., Washbourne C.J., Dutton J.J., Jackson S., Greeves J., Fraser W.D. Reference intervals for serum 24,25-dihydroxyvitamin D and the ratio with 25-hydroxyvitamin D established using a newly developed LC–MS/MS method. J. Nutr. Biochem. 2017;46:21–29. doi: 10.1016/j.jnutbio.2017.04.005.
    1. Baecher S., Leinenbach A., Wright J.A., Pongratz S., Kobold U., Thiele R. Simultaneous quantification of four vitamin D metabolites in human serum using high performance liquid chromatography tandem mass spectrometry for vitamin D profiling. Clin. Biochem. 2012;45:1491–1496. doi: 10.1016/j.clinbiochem.2012.06.030.
    1. Mena-Bravo A., Priego-Capote F., Luque de Castro M.D. Study of blood collection and sample preparation for analysis of vitamin D and its metabolites by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta. 2015;879:69–76. doi: 10.1016/j.aca.2015.03.012.
    1. Tai S.S., Nelson M.A. Candidate reference measurement procedure for the determination of (24R),25-dihydroxyvitamin D3 in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem. 2015;87:7964–7970. doi: 10.1021/acs.analchem.5b01861.
    1. Wise S.A., Tai S.S., Nelson M.A., Burdette C.Q., Camara J.E., Hoofnagle A.N., Laha T.J., Carter G.D., Jones J., Williams E.L., et al. Interlaboratory comparison for the determination of 24,25-dihydroxyvitamin D(3) in human serum using liquid chromatography with tandem mass spectrometry. J. AOAC Int. 2017;100:1308–1317. doi: 10.5740/jaoacint.17-0183.
    1. Groenestege W.M.T., Bui H.N., Kate J.T., Menheere P.P.C.A., Oosterhuis W.P., Vader H.L., Heijboer A.C., Janssen M.J.W. Accuracy of first and second generation testosterone assays and improvement through sample extraction. Clin. Chem. 2012;58:1154–1156. doi: 10.1373/clinchem.2011.181735.

Source: PubMed

3
Subscribe