Gender Differences in Food Choice: Effects of Superior Temporal Sulcus Stimulation

Valerio Manippa, Caterina Padulo, Laura N van der Laan, Alfredo Brancucci, Valerio Manippa, Caterina Padulo, Laura N van der Laan, Alfredo Brancucci

Abstract

The easy availability of food has caused a shift from eating for survival to hedonic eating. Women, compared to men, have shown to respond differently to food cues in the environment on a behavioral and a neural level, in particular to energy rich (compared to low energy) foods. It has been demonstrated that the right posterior superior temporal sulcus (STS) is the only region exhibiting greater activation for high vs. low calorie food choices. In order to test for a possible causal role of STS in food choice, we applied high frequency transcranial random noise stimulation (tRNS) on STS assuming a different response pattern between males and females. Our participants (18 females, 17 males) performed a forced choice task between food pairs matched for individual liking but differed in calorie, during the left STS, right STS stimulation and sham condition. Male participants showed a general preference for low calorie (LC) foods compared to females. In addition, we observed in males, but not in females, an increase of high calorie (HC) food choice during right STS tRNS compared to sham condition and left STS tRNS. Finally, we found an increase of missed choices during right STS stimulation compared to sham condition and left STS stimulation. In conclusion, thanks to tRNS evidence, we both confirm the involvement and suggest a causal role of right posterior STS in feeding behavior. Moreover, we suggest that gender differences exist in STS mechanisms underlying food choice.

Keywords: calorie; food choice; food evaluation; sex differences; superior temporal sulcus; transcranial random noise stimulation.

Figures

Figure 1
Figure 1
Trial sequence in the food rating task.
Figure 2
Figure 2
Two consecutive examples of forced choice task trials carried out during high-frequency (HF) transcranial random noise stimulation (tRNS) conditions. In the 3 s lapse of food pairs presentation, participants had to make their choice by key press. Top left: position of the right superior temporal sulcus (STS) electrode, the reference electrode was placed on the left shoulder (and vice versa for left STS electrode).
Figure 3
Figure 3
Interaction between tRNS condition and participants gender on % of high-calorie (HC) food choice (lSTS, left posterior STS stimulation; SH, Sham control condition; rSTS, right posterior STS stimulation). Data are presented as mean values + standard errors. *p < 0.05.
Figure 4
Figure 4
Effect of tRNS condition on rank transformed % of missed choices (lSTS, left posterior STS stimulation; SH, Sham control condition; rSTS, right posterior STS stimulation). Data are presented as mean values + standard errors. *p < 0.05.

References

    1. Arganini C., Turrini A., Saba A., Virgili F., Comitato R. (2012). “Gender differences in food choice and dietary intake in modern western societies,” in Public Health—Social and Behavioral Health, ed. Maddock J. (Rijeka: InTech Open Access Publisher; ), 85–102.
    1. Barnes C. L., Pandya D. N. (1992). Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 318, 222–244. 10.1002/cne.903180207
    1. Berridge K. C. (1999). “Pleasure, pain, desire and dread: hidden core processes of emotion,” in Well-Being: The foundations of Hedonic Psychology, eds Kahneman D., Diener E., Schwarz N. (New York, NY: Russell Sage Foundation; ), 525–557.
    1. Birch L. L. (1999). Development of food preferences. Annu. Rev. Nutr. 19, 41–62. 10.1146/annurev.nutr.19.1.41
    1. Braun C. M., Chouinard M. J. (1992). Is anorexia nervosa a neuropsychological disease? Neuropsychol. Rev. 3, 171–212. 10.1007/BF01108842
    1. Cahill L. (2006). Why sex matters for neuroscience. Nat. Rev. Neurosci. 7, 477–484. 10.1038/nrn1909
    1. Camus M., Halelamien N., Plassmann H., Shimojo S., O’Doherty J., Camerer C., et al. . (2009). Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex decreases valuations during food choices. Eur. J. Neurosci. 30, 1980–1988. 10.1111/j.1460-9568.2009.06991.x
    1. Cardinal R. N., Parkinson J. A., Hall J., Everitt B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352. 10.1016/s0149-7634(02)00007-6
    1. Chaieb L., Kovacs G., Cziraki C., Greenlee M., Paulus W., Antal A. (2009). Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Exp. Brain Res. 198, 439–444. 10.1007/s00221-009-1938-7
    1. Chao A. M., Loughead J., Bakizada Z. M., Hopkins C. M., Geliebter A., Gur R. C., et al. . (2017). Sex/gender differences in neural correlates of food stimuli: a systematic review of functional neuroimaging studies. Obes. Rev. 18, 687–699. 10.1111/obr.12527
    1. Charbonnier L., van der Laan L. N., Viergever M. A., Smeets P. A. (2015). Functional MRI of challenging food choices: forced choice between equally liked high-and low-calorie foods in the absence of hunger. PLoS One 10:e0131727. 10.1371/journal.pone.0131727
    1. Charbonnier L., van Meer F., van der Laan L. N., Viergever M. A., Smeets P. A. (2016). Standardized food images: a photographing protocol and image database. Appetite 96, 166–173. 10.1016/j.appet.2015.08.041
    1. Coletta M., Platek S., Mohamed F. B., van Steenburgh J. J., Green D., Lowe M. R. (2009). Brain activation in restrained and unrestrained eaters: an fMRI study. J. Abnorm. Psychol. 118, 598–609. 10.1037/a0016201
    1. Conway C. R., Sheline Y. I., Chibnall J. T., Bucholz R. D., Price J. L., Gangwani S., et al. . (2012). Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disorder. Brain Stimul. 5, 163–171. 10.1016/j.brs.2011.03.001
    1. Cooke L. J., Wardle J. (2005). Age and gender differences in children’s food preferences. Br. J. Nutr. 93, 741–746. 10.1079/bjn20051389
    1. Cuzzolaro M., Vetrone G., Marano G., Garfinkel P. E. (2006). The Body Uneasiness Test (BUT): development and validation of a new body image assessment scale. Eat. Weight Disord. 11, 1–13. 10.1007/bf03327738
    1. Dagher A. (2012). Functional brain imaging of appetite. Trends Endocrinol. Metab. 23, 250–260. 10.1016/j.tem.2012.02.009
    1. Dakanalis A., Zanetti M. A., Clerici M., Madeddu F., Riva G., Caccialanza R. (2013). Italian version of the Dutch Eating Behavior Questionnaire. Psychometric proprieties and measurement invariance across sex, BMI-status and age. Appetite 71, 187–195. 10.1016/j.appet.2013.08.010
    1. D’Argembeau A., Stawarczyk D., Majerus S., Collette F., Van der Linden M., Feyers D., et al. . (2010). The neural basis of personal goal processing when envisioning future events. J. Cogn. Neurosci. 22, 1701–1713. 10.1162/jocn.2009.21314
    1. Davy S. R., Benes B. A., Driskell J. A. (2006). Sex differences in dieting trends, eating habits and nutrition beliefs of a group of midwestern college students. J. Am. Diet. Assoc. 106, 1673–1677. 10.1016/j.jada.2006.07.017
    1. de Castro J. M. (1988). Physiological, environmental, and subjective determinants of food intake in humans: a meal pattern analysis. Physiol. Behav. 44, 651–659. 10.1016/0031-9384(88)90331-9
    1. Del Parigi A., Chen K., Gautier J. F., Salbe A. D., Pratley R. E., Ravussin E., et al. . (2002). Sex differences in the human brain’s response to hunger and satiation. Am. J. Clin. Nutr. 75, 1017–1022.
    1. Delli Pizzi S., Chiacchiaretta P., Mantini D., Bubbico G., Ferretti A., Edden R. A., et al. . (2016). Functional and neurochemical interactions within the amygdala-medial prefrontal cortex circuit and their relevance to emotional processing. Brain Struct. Funct. 222, 1267–1279. 10.1007/s00429-016-1276-z
    1. Delli Pizzi S., Padulo C., Brancucci A., Bubbico G., Edden R. A., Ferretti A., et al. . (2015). GABA content within the ventromedial prefrontal cortex is related to trait anxiety. Soc. Cogn. Affect. Neurosci. 11, 758–766. 10.1093/scan/nsv155
    1. Deng X., Kahn B. E. (2009). Is your product on the right side? The “location effect” on perceived product heaviness and package evaluation. J. Mark. Res. 46, 725–738. 10.1509/jmkr.46.6.725
    1. Drewnowski A. (1997). Taste preferences and food intake. Annu. Rev. Nutr. 17, 237–253. 10.1146/annurev.nutr.17.1.237
    1. Drewnowski A., Almiron-Roig E. (2009). “Human perceptions and preferences for fat-rich foods,” in Fat Detection: Taste, Texture, and Post Ingestive Effects, eds Montmayeur J. P., le Coutre J. (Boca Raton, FL: CRC Press/Taylor and Francis; ), 265–294.
    1. Drewnowski A., Mennella J. A., Johnson S. L., Bellisle F. (2012). Sweetness and food preference. J. Nutr. 142, 1142S–1148S. 10.3945/jn.111.149575
    1. Eertmans A., Baeyens F., Van den Bergh O. (2001). Food likes and their relative importance in human eating behavior: review and preliminary suggestions for health promotion. Health Educ. Res. 16, 443–456. 10.1093/her/16.4.443
    1. Epstein L. H., Leddy J. J. (2006). Food reinforcement. Appetite 46, 22–25. 10.1016/j.appet.2005.04.006
    1. Fertonani A., Pirulli C., Miniussi C. (2011). Random noise stimulation improves neuroplasticity in perceptual learning. J. Neurosci. 31, 15416–15423. 10.1523/JNEUROSCI.2002-11.2011
    1. Finlayson G., King N., Blundell J. E. (2007). Is it possible to dissociate ‘liking’ and ‘wanting’ for foods in humans? A novel experimental procedure. Physiol. Behav. 90, 36–42. 10.1016/j.physbeh.2006.08.020
    1. Foroni F., Pergola G., Argiris G., Rumiati R. I. (2013). The FoodCast research image database (FRIDa). Front. Hum. Neurosci. 7:51. 10.3389/fnhum.2013.00051
    1. Francis J. T., Gluckman B. J., Schiff S. J. (2003). Sensitivity of neurons to weak electric fields. J. Neurosci. 23, 7255–7261.
    1. Frank S., Laharnar N., Kullmann S., Veit R., Canova C., Hegner Y. L., et al. . (2010). Processing of food pictures: influence of hunger, gender and calorie content. Brain Res. 1350, 159–166. 10.1016/j.brainres.2010.04.030
    1. Fregni F., Orsati F., Pedrosa W., Fecteau S., Tome F. A., Nitsche M. A., et al. . (2008). Transcranial direct current stimulation of the prefrontal cortex modulates the desire for specific foods. Appetite 51, 34–41. 10.1016/j.appet.2007.09.016
    1. Friese M., Hofmann W., Wänke M. (2008). When impulses take over: moderated predictive validity of explicit and implicit attitude measures in predicting food choice and consumption behaviour. Br. J. Soc. Psychol. 47, 397–419. 10.1348/014466607x241540
    1. Garner D. M., Olmsted M. P., Bohr Y., Garfinkel P. E. (1982). The eating attitudes test: psychometric features and clinical correlates. Psychol. Med. 12, 871–878. 10.1017/s0033291700049163
    1. Gorczyca A. M., Sjaarda L. A., Mitchell E. M., Perkins N. J., Schliep K. C., Wactawski-Wende J., et al. . (2016). Changes in macronutrient, micronutrient, and food group intakes throughout the menstrual cycle in healthy, premenopausal women. Eur. J. Nutr. 55, 1181–1188. 10.1007/s00394-015-0931-0
    1. Gormally J., Black S., Daston S., Rardin D. (1982). The assessment of binge eating severity among obese persons. Addict. Behav. 7, 47–55. 10.1016/0306-4603(82)90024-7
    1. Gough B., Conner M. T. (2006). Barriers to healthy eating amongst men: a qualitative analysis. Soc. Sci. Med. 62, 387–395. 10.1016/j.socscimed.2005.05.032
    1. Haase L., Green E., Murphy C. (2011). Males and females show differential brain activation to taste when hungry and sated in gustatory and reward areas. Appetite 57, 421–434. 10.1016/j.appet.2011.06.009
    1. Hein G., Knight R. T. (2008). Superior temporal sulcus—it’s my area: or is it? J. Cogn. Neurosci. 20, 2125–2136. 10.1162/jocn.2008.20148
    1. Hofmann W., Rauch W., Gawronski B. (2007). And deplete us not into temptation: automatic attitudes, dietary restraint, and self-regulatory resources as determinants of eating behavior. J. Exp. Soc. Psychol. 43, 497–504. 10.1016/j.jesp.2006.05.004
    1. Huerta C. I., Sarkar P. R., Duong T. Q., Laird A. R., Fox P. T. (2014). Neural bases of food perception: coordinate-based meta-analyses of neuroimaging studies in multiple modalities. Obesity 22, 1439–1446. 10.1002/oby.20659
    1. Kandiah J., Yake M., Jones J., Meyer M. (2006). Stress influences appetite and comfort food preferences in college women. Nutr. Res. 26, 118–123. 10.1016/j.nutres.2005.11.010
    1. Killgore W. D. S., Yurgelun-Todd D. A. (2010). Sex differences in cerebral responses to images of high versus low calorie food. Neuroreport 21, 354–358. 10.1097/WNR.0b013e32833774f7
    1. Koessler L., Maillard L., Benhadid A., Vignal J. P., Felblinger J., Vespignani H., et al. . (2009). Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. Neuroimage 46, 64–72. 10.1016/j.neuroimage.2009.02.006
    1. Kremer S., Bult J. H., Mojet J., Kroeze J. H. (2007). Food perception with age and its relationship to pleasantness. Chem. Senses 32, 591–602. 10.1093/chemse/bjm028
    1. Lapenta O. M., Sierve K. D., de Macedo E. C., Fregni F., Boggio P. S. (2014). Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite 8, 42–48. 10.1016/j.appet.2014.08.005
    1. Leung H. C., Cai W. (2007). Common and differential ventrolateral prefrontal activity during inhibition of hand eye movements. J. Neurosci. 27, 9893–9900. 10.1523/JNEUROSCI.2837-07.2007
    1. Levy D. J., Glimcher P. W. (2011). Comparing apples and oranges: using reward-specific and reward-general subjective value representation in the brain. J. Neurosci. 31, 14693–14707. 10.1523/JNEUROSCI.2218-11.2011
    1. Luders E., Gaser C., Narr K. L., Toga A. W. (2009). Why sex matters: brain size independent differences in gray matter distributions between men and women. J. Neurosci. 29, 14265–14270. 10.1523/JNEUROSCI.2261-09.2009
    1. Mahachie John J. M., Van Lishout F., Gusareva E. S., Van Steen K. (2013). A robustness study of parametric and non-parametric tests in model-based multifactor dimensionality reduction for epistasis detection. BioData Min. 6:9. 10.1186/1756-0381-6-9
    1. Manta S., El Mansari M., Debonnel G., Blier P. (2013). Electrophysiological and neurochemical effects of long-term vagus nerve stimulation on the rat monoaminergic systems. Int. J. Neuropsychopharmacol. 16, 459–470. 10.1017/S1461145712000387
    1. Marano G., Cuzzolaro M., Vetrone G., Garfinkel P. E., Temperilli F., Spera G., et al. . (2007). Validating the Body Uneasiness Test (BUT) in obese patients. Eat. Weight Disord. 12, 70–82. 10.1007/bf03327581
    1. McLellan F. (2002). Obesity rising to alarming levels around the world. Lancet 359:1412. 10.1016/s0140-6736(02)08397-6
    1. Mela D. J. (2006). Eating for pleasure or just wanting to eat? Reconsidering sensory hedonic responses as a driver of obesity. Appetite 47, 10–17. 10.1016/j.appet.2006.02.006
    1. Moran J. M., Heatherton T. F., Kelley W. M. (2009). Modulation of cortical midline structures by implicit and explicit self-relevance evaluation. Soc. Neurosci. 4, 197–211. 10.1080/17470910802250519
    1. Myrseth K. O. R., Fishbach A., Trope Y. (2009). Counteractive self-control when making temptation available makes temptation less tempting. Psychol. Sci. 20, 159–163. 10.1111/j.1467-9280.2009.02268.x
    1. Narchi I., Walrand S., Boirie Y., Rousset S. (2008). Emotions generated by food in elderly French people. J. Nutr. Health Aging 12, 626–633. 10.1007/BF03008273
    1. Neuling T., Wagner S., Wolters C. H., Zaehle T., Herrmann C. S. (2012). Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front. Psychiatry 3:83. 10.3389/fpsyt.2012.00083
    1. Neumark-Sztainer D., Shenvood N. E., French S. A., Jefsery R. W. (1999). Weight control behaviors among adult men and women: cause for concern? Obes. Res. 7, 179–188. 10.1002/j.1550-8528.1999.tb00700.x
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. 10.1016/0028-3932(71)90067-4
    1. Padulo C., Carlucci L., Manippa V., Marzoli D., Saggino A., Tommasi L., et al. (2017). Valence, familiarity and arousal of different foods in relation to age, sex and weight. Food Qual. Prefer. 57, 104–113. 10.1016/j.foodqual.2016.12.010
    1. Paulus W. (2011). Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychol. Rehabil. 21, 602–617. 10.1080/09602011.2011.557292
    1. Peters J. C., Wyatt H. R., Donahoo W. T., Hill J. O. (2002). From instinct to intellect: the challenge of maintaining healthy weight in the modern world. Obes. Rev. 3, 69–74. 10.1046/j.1467-789x.2002.00059.x
    1. Piech R. M., Lewis J., Parkinson C. H., Owen A. M., Roberts A. C., Downing P. E., et al. . (2009). Neural correlates of appetite and hunger-related evaluative judgments. PLoS One 4:e6581. 10.1371/journal.pone.0006581
    1. Piech R. M., Lewis J., Parkinson C. H., Owen A. M., Roberts A. C., Downing P. E., et al. . (2010). Neural correlates of affective influence on choice. Brain Cogn. 72, 282–288. 10.1016/j.bandc.2009.09.012
    1. Pingitore R., Spring B., Garfieldt D. (1997). Gender differences in body satisfaction. Obes. Res. 5, 402–409. 10.1002/j.1550-8528.1997.tb00662.x
    1. Plassmann H., O’Doherty J. P., Rangel A. (2010). Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J. Neurosci. 30, 10799–10808. 10.1523/JNEUROSCI.0788-10.2010
    1. Pochon J. B., Levy R., Poline J. B., Crozier S., Lehéricy S., Pillon B., et al. . (2001). The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cereb. Cortex 11, 260–266. 10.1093/cercor/11.3.260
    1. Prada M., Garrido M. V., Rodrigues D. (2017). Lost in processing? Perceived healthfulness, taste and caloric content of whole and processed organic food. Appetite 114, 175–186. 10.1016/j.appet.2017.03.031
    1. Prete G., D’Anselmo A., Tommasi L., Brancucci A. (2017). Modulation of illusory auditory perception by transcranial electrical stimulation. Front. Neurosci. 11:351. 10.3389/fnins.2017.00351
    1. Ree M., Riediger N., Moghadasian M. H. (2008). Factors affecting food selection in Canadian Population. Eur. J. Clin. Nutr. 62, 1255–1262. 10.1038/sj.ejcn.1602863
    1. Rolls B. J., Fedoroff I. C., Guthrie J. F. (1991). Gender differences in eating behavior and body weight regulation. Health Psychol. 10, 133–142. 10.1037/0278-6133.10.2.133
    1. Saiote C., Polanía R., Rosenberger K., Paulus W., Antal A. (2013). High-frequency TRNS reduces BOLD activity during visuomotor learning. PLoS One 8:e59669. 10.1371/journal.pone.0059669
    1. Salzman C. D., Fusi S. (2010). Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu. Rev. Neurosci. 33, 173–202. 10.1146/annurev.neuro.051508.135256
    1. Saper C. B., Chou T. C., Elmquist J. K. (2002). The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211. 10.1016/S0896-6273(02)00969-8
    1. Seltzer B., Pandya D. N. (1989a). Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 281, 97–113. 10.1002/cne.902810108
    1. Seltzer B., Pandya D. N. (1989b). Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol. 290, 451–471. 10.1002/cne.902900402
    1. Seltzer B., Pandya D. N. (1994). Parietal, temporal, and occipital projections to cortex of the superior temporal sulcus in the rhesus monkey: a retrograde tracer study. J. Comp. Neurol. 343, 445–463. 10.1002/cne.903430308
    1. Shepherd R., Dennison C. M. (1996). Influences on adolescent food choice. Proc. Nutr. Soc. 55, 345–357. 10.1079/pns19960034
    1. Shiferaw B., Verrill L., Booth H., Zansky S. M., Norton D. M., Crim S., et al. . (2012). Sex-based differences in food consumption: foodborne diseases active surveillance network (FoodNet) population survey, 2006–2007. Clin. Infect. Dis. 54, S453–S457. 10.1093/cid/cis247
    1. Smeets P. A., de Graaf C., Stafleu A., van Osch M. J., Nievelstein R. A., van der Grond J. (2006). Effect of satiety on brain activation during chocolate tasting in men and women. Am. J. Clin. Nutr. 83, 1297–1305.
    1. Sowell E. R., Peterson B. S., Thompson P. M., Welcome S. E., Henkenius A. L., Toga A. W. (2003). Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315. 10.1038/nn1008
    1. Strack F., Deutsch R. (2014). “The reflective-impulsive model,” in Dual-Process Theories of the Social Mind, eds Sherman J. W., Gawrinski B., Trope Y. (New York, NY: The Guilford Press; ), 92–104.
    1. Stroebe W., Mensink W., Aarts H., Schut H., Kruglanski A. W. (2008). Why dieters fail: testing the goal conflict model of eating. J. Exp. Soc. Psychol. 44, 26–36. 10.1016/j.jesp.2007.01.005
    1. Terney D., Chaieb L., Moliadze V., Antal A., Paulus W. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 28, 14147–14155. 10.1523/jneurosci.4248-08.2008
    1. Uccula A., Nuvoli G. (2017). Body perception and meal type across age and gender on a Mediterranean island (Sardinia). Psychol. Health Med. 22, 1210–1216. 10.1080/13548506.2017.1307997
    1. Uher R., Yoganathan D., Mogg A., Eranti S. V., Treasure J., Campbell I. C., et al. . (2005). Effect of left prefrontal repetitive transcranial magnetic stimulation on food craving. Biol. Psychiatry 58, 840–842. 10.1016/j.biopsych.2005.05.043
    1. Vabø M., Hansen H. (2014). The relationship between food preferences and food choice: a theoretical discussion. Int. J. Bus. Soc. Sci. 5, 145–157.
    1. van der Laan L. N., de Ridder D. T., Charbonnier L., Viergever M. A., Smeets P. A. (2014). Sweet lies: neural, visual, and behavioral measures reveal a lack of self-control conflict during food choice in weight-concerned women. Front. Behav. Neurosci. 8:184. 10.3389/fnbeh.2014.00184
    1. van der Laan L. N., de Ridder D. T., Viergever M. A., Smeets P. A. (2011). The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage 55, 296–303. 10.1016/j.neuroimage.2010.11.055
    1. van der Laan L. N., de Ridder D. T., Viergever M. A., Smeets P. A. (2012). Appearance matters: neural correlates of food choice and packaging aesthetics. PLoS One 7:e41738. 10.1371/journal.pone.0041738
    1. van Strien T., Frijters J. E. R., Bergers G. P. A., Defares P. B. (1986). The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int. J. Eat. Disord. 5, 295–315. 10.1002/1098-108x(198602)5:2<295::aid-eat2260050209>;2-t
    1. Volkow N. D., Gur R. C., Wang G. J., Fowler J. S., Moberg P. J., Ding Y. S., et al. . (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am. J. Psychiatry 155, 344–349. 10.1176/ajp.155.3.344
    1. Wansink B. (2004). Environmental factors that increase the food intake and consumption volume of unknowing consumers. Annu. Rev. Nutr. 24, 455–479. 10.1146/annurev.nutr.24.012003.132140
    1. Wansink B., Cheney M. M., Chan N. (2003). Exploring comfort food preferences across age and gender. Physiol. Behav. 79, 739–747. 10.1016/s0031-9384(03)00203-8
    1. Wardle J., Haase A. M., Steptoe A., Nillapun M., Jonwutiwes K., Bellisie F. (2004). Gender differences in food choice: the contribution of health beliefs and dieting. Ann. Behav. Med. 27, 107–116. 10.1207/s15324796abm2702_5
    1. Wardle J., Parmenter K., Waller J. (2000). Nutrition knowledge and food intake. Appetite 34, 269–275. 10.1006/appe.1999.0311
    1. Williams K. W., Elmquist J. K. (2012). From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350–1355. 10.1038/nn.3217

Source: PubMed

3
Subscribe