A module of human peripheral blood mononuclear cell transcriptional network containing primitive and differentiation markers is related to specific cardiovascular health variables

Leni Moldovan, Mirela Anghelina, Taylor Kantor, Desiree Jones, Enass Ramadan, Yang Xiang, Kun Huang, Arunark Kolipaka, William Malarkey, Nima Ghasemzadeh, Peter J Mohler, Arshed Quyyumi, Nicanor I Moldovan, Leni Moldovan, Mirela Anghelina, Taylor Kantor, Desiree Jones, Enass Ramadan, Yang Xiang, Kun Huang, Arunark Kolipaka, William Malarkey, Nima Ghasemzadeh, Peter J Mohler, Arshed Quyyumi, Nicanor I Moldovan

Abstract

Peripheral blood mononuclear cells (PBMCs), including rare circulating stem and progenitor cells (CSPCs), have important yet poorly understood roles in the maintenance and repair of blood vessels and perfused organs. Our hypothesis was that the identities and functions of CSPCs in cardiovascular health could be ascertained by analyzing the patterns of their co-expressed markers in unselected PBMC samples. Because gene microarrays had failed to detect many stem cell-associated genes, we performed quantitative real-time PCR to measure the expression of 45 primitive and tissue differentiation markers in PBMCs from healthy and hypertensive human subjects. We compared these expression levels to the subjects' demographic and cardiovascular risk factors, including vascular stiffness. The tested marker genes were expressed in all of samples and organized in hierarchical transcriptional network modules, constructed by a bottom-up approach. An index of gene expression in one of these modules (metagene), defined as the average standardized relative copy numbers of 15 pluripotency and cardiovascular differentiation markers, was negatively correlated (all p<0.03) with age (R2 = -0.23), vascular stiffness (R2 = -0.24), and central aortic pressure (R2 = -0.19) and positively correlated with body mass index (R2 = 0.72, in women). The co-expression of three neovascular markers was validated at the single-cell level using mRNA in situ hybridization and immunocytochemistry. The overall gene expression in this cardiovascular module was reduced by 72±22% in the patients compared with controls. However, the compactness of both modules was increased in the patients' samples, which was reflected in reduced dispersion of their nodes' degrees of connectivity, suggesting a more primitive character of the patients' CSPCs. In conclusion, our results show that the relationship between CSPCs and vascular function is encoded in modules of the PBMCs transcriptional network. Furthermore, the coordinated gene expression in these modules can be linked to cardiovascular risk factors and subclinical cardiovascular disease; thus, this measure may be useful for their diagnosis and prognosis.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. qRT-PCR quantification of gene expression…
Figure 1. qRT-PCR quantification of gene expression in PBMCs from a sample of a healthy human population.
A. The average expression levels (indicated as the relative copy number, RCN = 2−ΔCq×100) of the tested genes ordered based on the strength of their covariation (compare to Fig. 2A). The data are expressed as the means ± SD. Inset. Cq values for housekeeping genes used as endogenous controls. Of note, the large SD displayed by CXCR4 was due not to outliers but to the skewness of the data distribution. B. Actual RCN values of the 45 tested genes in 26 healthy subjects, indicating the coordinated expression of the majority of the genes (conventional color coding).
Figure 2. Regression analysis of genes co-expressed…
Figure 2. Regression analysis of genes co-expressed in PBMCs isolated from healthy human adults.
A. Correlations between several cardiovascular-specific genes. B. Correlations between selected vascular and primitive genes in the same population. C. Correlations between other tissue-specific and primitive genes. D. Inverse correlation between the expression of vascular genes and a leukocyte gene (PTPRC/CD45). In all the graphs, the number of subjects is n = 26, R2 is the linear regression coefficient, and p indicates significance; these coefficients were placed in mirror positions across the diagonal with their corresponding graphs. The data represent RCNs.
Figure 3. Correlation and clustering analysis of…
Figure 3. Correlation and clustering analysis of data.
A. A heat map of the bivariate correlation matrix of gene expression levels representing Pearson's correlation coefficient, r, in descending order, beginning with KDR/VEGFR2 (red: positive correlation; blue: negative correlation; gray: no correlation). B. The corresponding probability values, p, after Bonferroni correction (red: p<0.05; gray: not significant). C. An unsupervised hierarchical clustering analysis (complete linkage on standardized data) representing the associations between the genes as distances (Y-axis). In A and C, the corresponding main gene groups are indicated by brackets.
Figure 4. Modular organization of a PBMC…
Figure 4. Modular organization of a PBMC gene sub-network.
A. Network representation of the genetic covariation. The thickness of each connecting line is proportional to the absolute value of the respective Pearson's correlation coefficient. Genes that were significantly correlated with the age, AIx, AoPP and BMI of the subjects are encircled (cf. Table 3). Color coding identifies the participation of genes in separate underlying clusters . B. Scaling of nodes' clustering coefficient C(k) with their connectivity degrees k, as a signature of hierarchical networks. Note that the data spontaneously split into two subpopulations, suggesting distinctly organized modules (for clarity, the leukocyte genes were omitted). Members of Module 1 (right), corresponding to the functionally filtered group in A (same color convention), had higher clustering values for similar k values than those in Module 2 (left), indicating stronger transcriptional coupling. C. Genes connected to the KDR node. Note that these connections perfectly overlap those of Module 1, while PROM1/CD133 serves as a link with Module 2, arguing that KDR is a hub node of Module 1. D. Connections of another hub node, NES. The images in A, C and D are based on Pearson correlation coefficients r>|0.8| and were obtained using the software Gephi 0.8 beta (www.gephi.org). The data shown in B were also obtained using Gephi, based on the network analysis in A.
Figure 5. Modular index (MI) of Module…
Figure 5. Modular index (MI) of Module 1 (metagene) associated with the age and cardiovascular parameters of blood donors.
A. Age-dependent variation in MI in the population. B. Regression analysis of MI on AIx. C, D. Correlations of MI with AoPP and BMI (in women). MI represents the 15-gene average of the standardized (mean = 0, SD = 1) RCN of each gene within the tested population, +/− SD. n = 26 for A–C and n = 14 for D. Note the apparently bimodal distribution of MI with age in this population.
Figure 6. Personalized representation of gene expression…
Figure 6. Personalized representation of gene expression as radial graphs.
A. The reference population level (RCN median, n = 26, 100%) is shown in blue, and the corresponding individual percentage values for the specified genes are shown in red in the order used in Fig. 2A. Note the pattern differences in Module 1 genes between females with normal BMIs (upper row) and those with higher BMIs (lower row). B. Association of aortic stiffness (left-side images) with radial gene profiles (right-side graphs) of two subjects: left, female, 56 years, average stiffness of 5.25 kPa; right: male, 52 years, average stiffness of 6.17 kPa. Aortic stiffness was measured by MRE, as described the Methods section; the local elasticity distribution is color coded, as shown in the scale at right (in kPa).
Figure 7. Comparison of gene expression in…
Figure 7. Comparison of gene expression in healthy and hypertensive subjects.
A. The median RCN in healthy controls (CT, blue) vs. hypertensive patients (HT, red); all of the differences are significant (p<0.05), with the exception of those labeled by arrows. Inset. Cq values of housekeeping genes in this patient population. B. Box plots of the aggregated MI (averages of normalized RCN values of Module 1 genes) in the control subjects and patients. (Box plots show the median values, 1st and 3rd quartiles, and the interquartile range; symbols are as in A).
Figure 8. Changes in the modular organization…
Figure 8. Changes in the modular organization of genes in hypertensive patients (n = 20; see Figs. 3 and 4 for details).
A. A heat map of intergenic covariation. B. The corresponding matrix of significance values following Bonferroni corrections. C. Dendrogram of hierarchical gene clustering. D. The network structure of the patient genes, indicating the fusion of Modules 1 and 2 of the network found in the healthy subjects (red). E. The relationship between the gene clustering coefficient C(k) and node degree (connectivity) k; the collapsed sub-network shows a very strong and nearly uniform connection between nodes (inset), suggestive of transcriptional primitivity. The data analysis and representation were performed as in Figs. 3 and 4.
Figure 9. Radial representation of relative gene…
Figure 9. Radial representation of relative gene expression in hypertensive patients.
A. Representative radial diagrams of patients with hypertension. Note the overall reduction in expression, with the exception of a subgroup of genes (e.g., ALPL, ITGAM, and PTPRC/CD45; compare with Fig. 7A). B. Radial diagrams of hypertensive patients treated with thiazide; in these cases, the gene patterns in the two modules were closer to normal (i.e. closer to the blue reference line).
Figure 10. Origins of marker gene co-expression…
Figure 10. Origins of marker gene co-expression within individual cells: in situ hybridization (ISH).
A. ISH analysis of the Module 1 hub genes KDR and NES and the node gene FSHR, identified by their fluorescent signals in a given microscopic field (brown masks were added to positive cells by the CellProfiler image analysis software; blue represents DAPI staining of nuclei). Arrow: a triple-positive cell. B. Four-color confocal images of cells that are positive for (a) all three markers; (b) NES and FSHR only; or (c) KDR and NES only (white: KDR; red: NES; green: FSHR; blue: nuclei). Bars: 5 µm. C–E. Linear regression of the integrated pixel intensity of the mRNA of each marker gene (KDR, NES, and FSHR) detected using ISH in triple-positive cells (n = 66 cells pooled from 8 individuals; r: Pearson's correlation coefficient; r2: regression coefficient; log-log scale). Inset graphs show the lack of correlation between mRNA expression (also measured as the integrated pixel intensity) in single-positive cells for each respective pair of markers. F. Nuclear area and several texture features calculated using the CellProfiler analysis significantly separated the triple-positive cells from the other cells (*, p<0.05 for single and double expressers vs. negatives; #, p<0.05 for single and double expressers vs. triple positives; ¶, p<0.05 for triple expressers vs. negatives) (a total of 2094 cells from 8 subjects were analyzed). Abbreviations: Comp., compactness; Int. Int., integrated intensity; Mean Int., mean intensity; Med. Int., median intensity; TDV, texture difference variance; TC, texture contrast; TV, texture variance; TSA, texture sum average. The data represent the means of standardized values ± SEM.
Figure 11. Detection of cells expressing representative…
Figure 11. Detection of cells expressing representative Module 1 node proteins using immunocytochemistry (ICC).
A. Cells expressing various levels of KDR (white), NES (green), and/or FSHR (red). Nuclei are blue (DAPI). a, b: NES-FSHR double-positive cells; c: a triple-positive cell. Bars: 5 µm. B. A nuclear morphology analysis revealed alterations in the triple-positive cells detected using ICC that were comparable to those found using ISH (see Fig. 10 for abbreviations). The data represent the means of standardized values ± SEM; a total of 1655 cells were analyzed. C. Frequencies of cells positive for the three marker genes, detected using ISH (gray bars) and ICC (black bars) (n = 2094 and 1655 cells, respectively; none of the inter-method comparisons were significant, demonstrating that they detected the same cell populations). The data represent the means of individual blood donors ± SEM.

References

    1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967.
    1. Li CS, Neu MB, Shaw LC, Kielczewski JL, Moldovan NI, et al. (2010) EPCs and pathological angiogenesis: when good cells go bad. Microvasc Res 79: 207–216.
    1. Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, et al. (2010) Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 211: 103–109.
    1. Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, et al. (2014) Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature 505: 641–647.
    1. Dong C, Goldschmidt-Clermont PJ (2007) Endothelial progenitor cells: a promising therapeutic alternative for cardiovascular disease. J Interv Cardiol 20: 93–99.
    1. Palombo C, Kozakova M, Morizzo C, Gnesi L, Barsotti MC, et al. (2011) Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol 10: 88 10.1186/1475-2840-10-88
    1. Richardson MR, Yoder MC (2011) Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol 50: 266–272.
    1. Duda DG, Cohen KS, Scadden DT, Jain RK (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2: 805–810.
    1. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, et al. (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348: 593–600.
    1. Tura O, Skinner EM, Barclay GR, Samuel K, Gallagher RC, et al. (2013) Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31: 338–348.
    1. Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12: 56–68.
    1. Palmer NP, Schmid PR, Berger B, Kohane IS (2012) A gene expression profile of stem cell pluripotentiality and differentiation is conserved across diverse solid and hematopoietic cancers. Genome Biol 13: R71–R84.
    1. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, et al. (2009) Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53: 1–9.
    1. Liew CC, Ma J, Tang HC, Zheng R, Dempsey AA (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147: 126–132.
    1. Kohane IS, Valtchinov VI (2012) Quantifying the white blood cell transcriptome as an accessible window to the multiorgan transcriptome. Bioinformatics 28: 538–545.
    1. de JS, Boks MP, Fuller TF, Strengman E, Janson E, et al. (2012) A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes. PLoS One 7: e39498 10.1371/journal.pone.0039498
    1. Joehanes R, Ying S, Huan T, Johnson AD, Raghavachari N, et al. (2013) Gene expression signatures of coronary heart disease. Arterioscler Thromb Vasc Biol 33: 1418–1426.
    1. Kang BH, Jensen KJ, Hatch JA, Janes KA (2013) Simultaneous profiling of 194 distinct receptor transcripts in human cells. Sci Signal 6: rs13 10.1126/scisignal.2003624
    1. Alberts R, Lu L, Williams RW, Schughart K (2011) Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures. Respir Res 12: 61.
    1. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, et al. (2011) Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144: 439–452.
    1. Guo G, Luc S, Marco E, Lin TW, Peng C, et al. (2013) Mapping Cellular Hierarchy by Single-Cell Analysis of the Cell Surface Repertoire. Cell Stem Cell 13: 492–505.
    1. Moignard V, Macaulay IC, Swiers G, Buettner F, Schutte J, et al. (2013) Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 15: 363–372.
    1. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, et al. (2006) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20: 18–28.
    1. AtCorMedical (2013) A clinical guide: Pulse wave analysis. . Accessed 2014 March 30.
    1. Kolipaka A, Woodrum D, Araoz PA, Ehman RL (2012) MR elastography of the in vivo abdominal aorta: a feasibility study for comparing aortic stiffness between hypertensives and normotensives. J Magn Reson Imaging 35: 582–586.
    1. Damughatla AR, Raterman B, Sharkey-Toppen T, Jin N, Simonetti OP, et al. (2013) Quantification of aortic stiffness using MR Elastography and its comparison to MRI-based pulse wave velocity. J Magn Reson Imaging. doi:10.1002/jmri.24506.
    1. Gavrilin MA, Bouakl IJ, Knatz NL, Duncan MD, Hall MW, et al. (2006) Internalization and phagosome escape required for Francisella to induce human monocyte IL-1beta processing and release. Proc Natl Acad Sci U S A 103: 141–146.
    1. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, et al. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100.
    1. Li L, Li M, Sun C, Francisco L, Chakraborty S, et al. (2011) Altered hematopoietic cell gene expression precedes development of therapy-related myelodysplasia/acute myeloid leukemia and identifies patients at risk. Cancer Cell 20: 591–605.
    1. Xiang Y, Fuhry D, Kaya K, Jin R, Catalyurek UV, et al. (2012) Merging network patterns: a general framework to summarize biomedical network data. Netw Model Anal Health Inform Bioinforma 1: 103–116.
    1. Bron C (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16: 575–577.
    1. Bastian M, Heymann S, Jacomy M (2009) Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.
    1. Etienne W, Meyer MH, Peppers J, Meyer RA Jr (2004) Comparison of mRNA gene expression by RT-PCR and DNA microarray. Biotechniques 36: 618–6.
    1. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101–113.
    1. West J, Widschwendter M, Teschendorff AE (2013) Distinctive topology of age-associated epigenetic drift in the human interactome. Proc Natl Acad Sci U S A 110: 14138–14143.
    1. Riggio S, Mandraffino G, Sardo MA, Iudicello R, Camarda N, et al. (2010) Pulse wave velocity and augmentation index, but not intima-media thickness, are early indicators of vascular damage in hypercholesterolemic children. Eur J Clin Invest 40: 250–257.
    1. Garcia-Ortiz L, Recio-Rodriguez JI, Canales-Reina JJ, Cabrejas-Sanchez A, Gomez-Arranz A, et al. (2012) Comparison of two measuring instruments, B-pro and SphygmoCor system as reference, to evaluate central systolic blood pressure and radial augmentation index. Hypertens Res 35: 617–640.
    1. Streiner DL (2003) Starting at the beginning: an introduction to coefficient alpha and internal consistency. J Pers Assess 80: 99–103.
    1. Heinemann DE, Siggelkow H, Ponce LM, Viereck V, Wiese KG, et al. (2000) Alkaline phosphatase expression during monocyte differentiation. Overlapping markers as a link between monocytic cells, dendritic cells, osteoclasts and osteoblasts. Immunobiology 202: 68–81.
    1. Fadini GP, Albiero M, Menegazzo L, Boscaro E, Agostini C, et al. (2012) Procalcific phenotypic drift of circulating progenitor cells in type 2 diabetes with coronary artery disease. Exp Diabetes Res 2012: 921685 10.1155/2012/921685
    1. Balber AE (2011) Concise review: aldehyde dehydrogenase bright stem and progenitor cell populations from normal tissues: characteristics, activities, and emerging uses in regenerative medicine. Stem Cells 29: 570–575.
    1. Penn MS (2010) SDF-1:CXCR4 axis is fundamental for tissue preservation and repair. Am J Pathol 177: 2166–2168.
    1. Saito S, Aoki H, Ito A, Ueno S, Wada T, et al. (2003) Human alpha2,3-sialyltransferase (ST3Gal II) is a stage-specific embryonic antigen-4 synthase. J Biol Chem 278: 26474–26479.
    1. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109: 1743–1751.
    1. Miyanishi M, Mori Y, Seita J, Chen JY, Karten S, et al. (2013) Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Reports 1: 198–208.
    1. Ratajczak MZ, Zuba-Surma EK, Machalinski B, Ratajczak J, Kucia M (2008) Very small embryonic-like (VSEL) stem cells: purification from adult organs, characterization, and biological significance. Stem Cell Rev 4: 89–99.
    1. Radu A, Pichon C, Camparo P, Antoine M, Allory Y, et al. (2010) Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 363: 1621–1630.
    1. Liu E, Gordonov S, Treiser MD, Moghe PV (2010) Parsing the early cytoskeletal and nuclear organizational cues that demarcate stem cell lineages. Cell Cycle 9: 2108–2117.
    1. Shibata R, Skurk C, Ouchi N, Galasso G, Kondo K, et al. (2008) Adiponectin promotes endothelial progenitor cell number and function. FEBS Lett 582: 1607–1612.
    1. Bellows CF, Zhang Y, Chen J, Frazier ML, Kolonin MG (2011) Circulation of progenitor cells in obese and lean colorectal cancer patients. Cancer Epidemiol Biomarkers Prev 20: 2461–2468.
    1. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453: 544–547.
    1. Magalhaes DA, Silveira EL, Junta CM, Sandrin-Garcia P, Fachin AL, et al. (2006) Promiscuous gene expression in the thymus: the root of central tolerance. Clin Dev Immunol 13: 81–99.
    1. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, et al. (2004) Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia 18: 29–40.
    1. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, et al. (2013) Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121: 984–995.
    1. Quesenberry PJ, Dooner MS, Goldberg LR, Aliotta JM, Pereira M, et al. (2012) A new stem cell biology: the continuum and microvesicles. Trans Am Clin Climatol Assoc 123: 152–166.
    1. Lewis CE, De PM, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67: 8429–8432.
    1. Rouhl RP, Mertens AE, van Oostenbrugge RJ, Damoiseaux JG, Debrus-Palmans LL, et al. (2012) Angiogenic T-cells and putative endothelial progenitor cells in hypertension-related cerebral small vessel disease. Stroke 43: 256–258.
    1. Harrison DG, Marvar PJ, Titze JM (2012) Vascular inflammatory cells in hypertension. Front Physiol 3: 128 10.3389/fphys.2012.00128.eCollection2012
    1. Hur J, Yang HM, Yoon CH, Lee CS, Park KW, et al. (2007) Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 116: 1671–1682.
    1. Liu X, Li Y, Liu Y, Luo Y, Wang D, et al. (2010) Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy. Am J Pathol 176: 504–515.
    1. Cheng S, Wang N, Larson MG, Palmisano JN, Mitchell GF, et al. (2012) Circulating angiogenic cell populations, vascular function, and arterial stiffness. Atherosclerosis 220: 145–150.
    1. Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP, et al. (2011) Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med 3: 112ra122 10.1126/scitranslmed.3002761
    1. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, et al. (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13: R97.
    1. Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, et al. (2012) Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308: 875–881.
    1. Oliveras A, de la Sierra A, Martinez-Estrada OM, Larrousse M, Vazquez S, et al. (2008) Putative endothelial progenitor cells are associated with flow-mediated dilation in refractory hypertensives. Blood Press 17: 298–305.
    1. Durik M, Seva PB, Roks AJ (2012) The renin-angiotensin system, bone marrow and progenitor cells. Clin Sci (Lond) 123: 205–223.
    1. De CC, Pilu A, Rizzoni D, Porteri E, Muiesan ML, et al. (2011) Effect of antihypertensive treatment on circulating endothelial progenitor cells in patients with mild essential hypertension. Blood Press 20: 77–83.
    1. Banerji CR, Miranda-Saavedra D, Severini S, Widschwendter M, Enver T, et al. (2013) Cellular network entropy as the energy potential in Waddington's differentiation landscape. Sci Rep 3: 3039 10.1038/srep03039

Source: PubMed

3
Subscribe