Increase of Parkin and ATG5 plasmatic levels following perinatal hypoxic-ischemic encephalopathy

Anna Tarocco, Giampaolo Morciano, Mariasole Perrone, Claudia Cafolla, Cristina Ferrè, Tiziana Vacca, Ginevra Pistocchi, Fabio Meneghin, Ilaria Cocchi, Gianluca Lista, Irene Cetin, Pantaleo Greco, Giampaolo Garani, Marcello Stella, Miria Natile, Gina Ancora, Immacolata Savarese, Francesca Campi, Iliana Bersani, Andrea Dotta, Eloisa Tiberi, Giovanni Vento, Elisabetta Chiodin, Alex Staffler, Eugenia Maranella, Sandra Di Fabio, Mariusz R Wieckowski, Carlotta Giorgi, Paolo Pinton, Anna Tarocco, Giampaolo Morciano, Mariasole Perrone, Claudia Cafolla, Cristina Ferrè, Tiziana Vacca, Ginevra Pistocchi, Fabio Meneghin, Ilaria Cocchi, Gianluca Lista, Irene Cetin, Pantaleo Greco, Giampaolo Garani, Marcello Stella, Miria Natile, Gina Ancora, Immacolata Savarese, Francesca Campi, Iliana Bersani, Andrea Dotta, Eloisa Tiberi, Giovanni Vento, Elisabetta Chiodin, Alex Staffler, Eugenia Maranella, Sandra Di Fabio, Mariusz R Wieckowski, Carlotta Giorgi, Paolo Pinton

Abstract

Brain injury at birth is an important cause of neurological and behavioral disorders. Hypoxic-ischemic encephalopathy (HIE) is a critical cerebral event occurring acutely or chronically at birth with high mortality and morbidity in newborns. Therapeutic strategies for the prevention of brain damage are still unknown, and the only medical intervention for newborns with moderate-to-severe HIE is therapeutic hypothermia (TH). Although the neurological outcome depends on the severity of the initial insult, emerging evidence suggests that infants with mild HIE who are not treated with TH have an increased risk for neurodevelopmental impairment; in the current clinical setting, there are no specific or validated biomarkers that can be used to both correlate the severity of the hypoxic insult at birth and monitor the trend in the insult over time. The aim of this work was to examine the presence of autophagic and mitophagic proteins in bodily fluids, to increase knowledge of what, early at birth, can inform therapeutic strategies in the first hours of life. This is a prospective multicentric study carried out from April 2019 to April 2020 in eight third-level neonatal intensive care units. All participants have been subjected to the plasma levels quantification of both Parkin (a protein involved in mitophagy) and ATG5 (involved in autophagy). These findings show that Parkin and ATG5 levels are related to hypoxic-ischemic insult and are reliable also at birth. These observations suggest a great potential diagnostic value for Parkin evaluation in the first 6 h of life.

Trial registration: ClinicalTrials.gov NCT03897101.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Investigation of mitophagy in newborns at birth and correlation with clinical endpoints. (A) Parkin plasma levels measured by ELISA in healthy, babies not needing TH and severe HIE newborns. (B) Correlation between Parkin and pH at birth. (C) Parkin level stratification according to the base excess score in the whole cohort. (D) Correlation between Parkin and lactate release at birth. (E) Parkin level stratification according to resuscitation-at- birth score in the whole cohort (0–1 = CPAP assistance, 2–5 = from PPV to drugs). (F) Parkin level stratification according to Apgar score at 5 min in the whole cohort.
Figure 2
Figure 2
Investigation of autophagy in newborns at birth and correlation with clinical endpoints. (A) ATG5 plasma levels measured by ELISA in healthy, babies not needing TH and severe HIE newborns. (B) Correlation between ATG5 and pH at birth. (C) ATG5 level stratification according to base excess score in the whole cohort. (D) Correlation between ATG5 and lactate release at birth. (E) ATG5 level stratification according to resuscitation at birth score in the whole cohort (0–1 = CPAP assistance, 2–5 = from PPV to drugs). (F) ATG5 level stratification according to Apgar score at 5 min in the whole cohort.
Figure 3
Figure 3
Mitophagy and autophagy changes overtime. (A) Parkin plasma levels measured by ELISA in healthy, babies not needing TH and severe HIE newborns at T1 (72 h) and at T2 (7 days), as well as at birth. (B) ATG5 plasma levels measured by ELISA in healthy, MAB group and severe HIE newborns at T1 (72 h) and at T2 (7 days), as well as at birth.
Figure 4
Figure 4
Stratification of Parkin levels in the Group B. Parkin level stratification according to pH (A), base excess (B), lactates (C), CPR (D) and Apgar score at 5 min (E) in Group B.

References

    1. Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev. Neurother. 2017;17(5):449–459. doi: 10.1080/14737175.2017.1259567.
    1. Parikh P, Juul SE. Neuroprotective strategies in neonatal brain injury. J. Pediatr. 2018;192:22–32. doi: 10.1016/j.jpeds.2017.08.031.
    1. Robertson CM, Perlman M. Follow-up of the term infant after hypoxic-ischemic encephalopathy. Paediatr. Child Health. 2006;11(5):278–282.
    1. Conway JM, Walsh BH, Boylan GB, Murray DM. Mild hypoxic ischaemic encephalopathy and long term neurodevelopmental outcome - A systematic review. Early Hum. Dev. 2018;120:80–87. doi: 10.1016/j.earlhumdev.2018.02.007.
    1. Martinello K, Hart AR, Yap S, Mitra S, Robertson NJ. Management and investigation of neonatal encephalopathy: 2017 update. Arch. Dis. Child Fetal Neonatal. Ed. 2017;102(4):F346–F358. doi: 10.1136/archdischild-2015-309639.
    1. Kurinczuk JJ, White-Koning M, Badawi N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 2010;86(6):329–338. doi: 10.1016/j.earlhumdev.2010.05.010.
    1. Nguyen V, et al. Sonic hedgehog agonist protects against complex neonatal cerebellar injury. Cerebellum. 2018;17(2):213–227. doi: 10.1007/s12311-017-0895-0.
    1. Shankaran S, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 2005;353(15):1574–1584. doi: 10.1056/NEJMcps050929.
    1. Chalak LF, et al. Prospective research in infants with mild encephalopathy identified in the first six hours of life: neurodevelopmental outcomes at 18–22 months. Pediatr. Res. 2018;84(6):861–868. doi: 10.1038/s41390-018-0174-x.
    1. Bersani I, et al. Use of early biomarkers in neonatal brain damage and sepsis: state of the art and future perspectives. Biomed. Res. Int. 2015;2015:253520.
    1. Ennen CS, et al. Glial fibrillary acidic protein as a biomarker for neonatal hypoxic-ischemic encephalopathy treated with whole-body cooling. Am. J. Obstet. Gynecol. 2011;205(3):251.e1–7. doi: 10.1016/j.ajog.2011.06.025.
    1. Murray DM. Biomarkers in neonatal hypoxic-ischemic encephalopathy-Review of the literature to date and future directions for research. Handb. Clin. Neurol. 2019;162:281–293. doi: 10.1016/B978-0-444-64029-1.00013-8.
    1. D’angelo, G., Cannavò, L., Reiter, R. J., Gitto, E. Melatonin administration from 2000 to 2020 to human newborns with hypoxic-ischemic encephalopathy. Am. J. Perinatol. [published online ahead of print: October 31, 2020]; 10.1055/s-0040-1719151
    1. Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol. Dis. 2008;32(3):329–339. doi: 10.1016/j.nbd.2008.07.022.
    1. Ginet V, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann. Neurol. 2014;76(5):695–711. doi: 10.1002/ana.24257.
    1. Ginet V, Puyal J, Clarke PGH, Truttmann AC. Enhancement of autophagic flux after neonatal cerebral hypoxia-ischemia and its region-specific relationship to apoptotic mechanisms. Am. J. Pathol. 2009;175(5):1962–1974. doi: 10.2353/ajpath.2009.090463.
    1. Galluzzi L, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. doi: 10.1038/s41418-017-0012-4.
    1. Yang Z, Klionsky DJ. Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 2010;22(2):124–131. doi: 10.1016/j.ceb.2009.11.014.
    1. Ye X, Zhou X-J, Zhang H. Exploring the Role of Autophagy-Related Gene 5 (ATG5) yields important insights into autophagy in autoimmune/autoinflammatory diseases. Front. Immunol. 2018;9:2334. doi: 10.3389/fimmu.2018.02334.
    1. Morciano, G., et al. Impairment of mitophagy and autophagy accompanies calcific aortic valve stenosis favoring cell death and the severity of disease. Cardiovasc. Res. 2021;cvab267.
    1. Morciano G, et al. Mitophagy in cardiovascular diseases. J. Clin. Med. 2020;9(3):892. doi: 10.3390/jcm9030892.
    1. Castellazzi M, et al. Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer’s disease and mild cognitive impairment. Sci. Rep. 2019;9(1):20009. doi: 10.1038/s41598-019-56614-5.
    1. Patergnani S, et al. Autophagy and mitophagy elements are increased in body fluids of multiple sclerosis-affected individuals. J. Neurol. Neurosurg. Psychiatry. 2018;89(4):439–441. doi: 10.1136/jnnp-2017-316234.
    1. Prempunpong C, et al. Prospective research on infants with mild encephalopathy: The PRIME study. J. Perinatol. 2018;38(1):80–85. doi: 10.1038/jp.2017.164.
    1. Abate BB, et al. Effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy: A systematic review and meta-analysis of randomized control trials. PLoS ONE. 2021;16(2):e0247229. doi: 10.1371/journal.pone.0247229.
    1. Rollins N, et al. Predictive value of neonatal MRI showing no or minor degrees of brain injury after hypothermia. Pediatr. Neurol. 2014;50(5):447–451. doi: 10.1016/j.pediatrneurol.2014.01.013.
    1. Thoresen M, Hellström-Westas L, Liu X, de Vries LS. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics. 2010;126(1):e131–139. doi: 10.1542/peds.2009-2938.
    1. Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch. Neurol. 1976;33(10):696–705. doi: 10.1001/archneur.1976.00500100030012.
    1. Lally PJ, et al. Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: A prospective multicentre cohort study. Lancet Neurol. 2019;18(1):35–45. doi: 10.1016/S1474-4422(18)30325-9.
    1. Goswami IR, et al. Characteristics and short-term outcomes of neonates with mild hypoxic-ischemic encephalopathy treated with hypothermia. J. Perinatol. 2020;40(2):275–283. doi: 10.1038/s41372-019-0551-2.
    1. McDouall A, Wassink G, Bennet L, Gunn AJ, Davidson JO. Challenges in developing therapeutic strategies for mild neonatal encephalopathy. Neural Regen. Res. 2022;17(2):277–282. doi: 10.4103/1673-5374.317963.
    1. Chalak LF, et al. Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J. Pediatr. 2014;164(3):468–474.e1. doi: 10.1016/j.jpeds.2013.10.067.
    1. Lv H, et al. Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin. Chim Acta. 2015;450:282–297. doi: 10.1016/j.cca.2015.08.021.
    1. Bersani I, et al. Early predictors of perinatal brain damage: the role of neurobiomarkers. Clin. Chem. Lab. Med. 2020;58(4):471–486. doi: 10.1515/cclm-2019-0725.
    1. Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic. Biol. Med. 2016;100:210–222. doi: 10.1016/j.freeradbiomed.2016.04.015.
    1. Patergnani S, et al. Antipsychotic drugs counteract autophagy and mitophagy in multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2021;118(24):e2020078118. doi: 10.1073/pnas.2020078118.

Source: PubMed

3
Subscribe