Superior Effects of Eccentric to Concentric Knee Extensor Resistance Training on Physical Fitness, Insulin Sensitivity and Lipid Profiles of Elderly Men

Trevor Chung-Ching Chen, Wei-Chin Tseng, Guan-Ling Huang, Hsin-Lian Chen, Kuo-Wei Tseng, Kazunori Nosaka, Trevor Chung-Ching Chen, Wei-Chin Tseng, Guan-Ling Huang, Hsin-Lian Chen, Kuo-Wei Tseng, Kazunori Nosaka

Abstract

It has been reported that eccentric training of knee extensors is effective for improving blood insulin sensitivity and lipid profiles to a greater extent than concentric training in young women. However, it is not known whether this is also the case for elderly individuals. Thus, the present study tested the hypothesis that eccentric training of the knee extensors would improve physical function and health parameters (e.g., blood lipid profiles) of older adults better than concentric training. Healthy elderly men (60-76 years) were assigned to either eccentric training or concentric training group (n = 13/group), and performed 30-60 eccentric or concentric contractions of knee extensors once a week. The intensity was progressively increased over 12 weeks from 10 to 100% of maximal concentric strength for eccentric training and from 50 to 100% for concentric training. Outcome measures were taken before and 4 days after the training period. The results showed that no sings of muscle damage were observed after any sessions. Functional physical fitness (e.g., 30-s chair stand) and maximal concentric contraction strength of the knee extensors increased greater (P ≤ 0.05) after eccentric training than concentric training. Homeostasis model assessment, oral glucose tolerance test and whole blood glycosylated hemoglobin showed improvement of insulin sensitivity only after eccentric training (P ≤ 0.05). Greater (P ≤ 0.05) decreases in fasting triacylglycerols, total, and low-density lipoprotein cholesterols were evident after eccentric training than concentric training, and high-density lipoprotein cholesterols increased only after eccentric training. These results support the hypothesis and suggest that it is better to focus on eccentric contractions in exercise medicine.

Keywords: blood lipid profile; insulin resistance; lengthening muscle contraction; muscle damage; senior functional fitness tests.

Figures

Figure 1
Figure 1
Normalized changes (mean ± SD) in one repetition maximum of concentric knee extensor strength (1RM), maximal voluntary concentric (MVCcon) and isometric contraction torque of the knee extensors (MVCiso), 30-s chair stand (CS), 2-m step (2MS), 8-foot up-and-go (8UG), one-leg stand with eyes open (OLST), 6-meter tandem walk (6-mTW), and 6-m walk (6MW) from baseline (0%) to post-training measures for eccentric (ET) and concentric training groups (CT). *A significant (P < 0.05) difference from CT group.
Figure 2
Figure 2
Normalized changes (mean ± SD) in fasting glucose (GLU), insulin (INS), homeostasis model assessment (HOMA), whole blood glycosylated hemoglobin (HbAlC), 2-h oral glucose tolerance test (OGTT), triacylglycerols (TG), total cholesterol (TC), low- (LDLC) and high-density lipoprotein cholesterols (HDLC) from baseline (0%) to post-training measures for eccentric (ET) and concentric training groups (CT). *A significant (P < 0.05) difference from CT group.

References

    1. Asp S., Daugaard J. R., Kristiansen S., Kiens B., Richter E. A. (1996). Eccentric exercise decreases maximal insulin action in humans: muscle and systemic effects. J. Physiol. 494, 891–898. 10.1113/jphysiol.1996.sp021541
    1. Ben-Sira D., Ayalon A., Tavi M. (1995). The effect of different types of strength training on concentric strength in women. J. Strength Cond. Res. 9, 143–148. 10.1519/00124278-199508000-00004
    1. Blazevich A. J., Cannavan D., Coleman D. R., Horne S. (2007). Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J. Appl. Physiol. 103, 1565–1575. 10.1152/japplphysiol.00578.2007
    1. Booth F. W., Roberts C. K., Laye M. J. (2012). Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2, 1143–1211. 10.1002/cphy.c110025
    1. Borg G. (1970). Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2, 92–98.
    1. Chen H. L., Nosaka K., Chen T. C. (2012). Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur. J. Appl. Physiol. 112, 555–565. 10.1007/s00421-011-1999-8
    1. Chen H. Y., Wang H. S., Tung K., Chao H. H. (2015). Effects of gender difference and caffeine supplementation on anaerobic muscle performance. Int. J. Sports Med. 36, 974–978. 10.1055/s-0035-1550048
    1. Chen T. C., Tseng W. C., Huang G. L., Chen H. L., Tseng K. W., Nosaka K. (2013). Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. Eur. J. Appl. Physiol. 113, 1005–1015. 10.1007/s00421-012-2517-3
    1. Ciolac E. G., Rodrigues-da-Silva J. M. (2016). Resistance training as a tool for preventing and treating musculoskeletal disorders. Sports Med. 46, 1239–1248. 10.1007/s40279-016-0507-z
    1. Clarkson P. M., Nosaka K., Braun B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Med. Sci. Sports Exerc. 24, 512–520. 10.1249/00005768-199205000-00004
    1. Douglas J., Pearson S., Ross A., McGuigan M. (2016). Chronic adaptations to eccentric training: a systematic review. Sports Med. [Epub ahead of print]. 10.1007/s40279-016-0628-4
    1. Elmer S., Hahn S., McAllister P., Leong C., Martin J. (2012). Improvements in multi- joint leg function following chronic eccentric exercise. Scand. J. Med. Sci. Sports. 22, 653–661. 10.1111/j.1600-0838.2011.01291.x
    1. Fang I. Y., Chang S. H., Ho H. H. (2015). Effects of multi-component exercise training on functional fitness in community-dwelling older adults. Phys. Educ. J. 48, 59–72. 10.3966/102472972015034801005
    1. Franchi M. V., Atherton P. J., Reeves N. D., Flück M., Williams J., Mitchell W. K., et al. . (2014). Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 210, 642–654. 10.1111/apha.12225
    1. Franchi M. V., Wilkinson D. J., Quinlan J. I., Mitchell W. K., Lund J. N., Williams J. P., et al. . (2015). Early structural remodeling and deuterium oxide-derived protein metabolic responses to eccentric and concentric loading in human skeletal muscle. Physiol. Rep. 3:e12593. 10.14814/phy2.12593
    1. Gault M. L., Willems M. E. (2013). Aging, functional capacity and eccentric exercise training. Aging Dis. 4, 351–363. 10.14336/AD.2013.0400351
    1. Gómez-Cabello A., Ara I., Gonzalez-Aguero A., Casajus J. A., Vicente-Rodriguez G. (2012). Effects of training on bone mass in older adults: a systematic review. Sports Med. 42, 301–325. 10.2165/11597670-000000000-00000
    1. Green M. S., Doyle J. A., Ingalls C. P., Benardot D., Rupp J. C., Corana B. T. (2010). Adaptation of insulin-resistance indicators to a repeated bout of eccentric exercise in human skeletal muscle. Int. J. Sport Nutr. Exerc. Metab. 20, 181–190. 10.1123/ijsnem.20.3.181
    1. Hawes M. R., Martin A. D. (2001). Human body composition, in Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data, eds Eston R., Reilly T. (London: Routledge; ), 42–43.
    1. Hody S., Rogister B., Leprince P., Laglaine T., Croisier J. L. (2013). The susceptibility of the knee extensors to eccentric exercise-induced muscle damage is not affected by leg dominance but by exercise order. Clin. Physiol. Funct. Imaging 33, 373–380. 10.1111/cpf.12040
    1. Hoppeler H. (2016). Moderate load eccentric exercise: a distinct novel training modality. Front. Physiol. 7:483 10.3389/fphys.2016.00483
    1. Hortobágyi T., Hill J. P., Houmard J. A., Fraser D. D., Lambert N. J., Israel R. G. (1996). Adaptive responses to muscle lengthening and shortening in humans. J. Appl. Physiol. 80, 765–772.
    1. Howatson G., van Someren K. A. (2008). The prevention and treatment of exercise-Induced muscle damage. Sports Med. 38, 483–503. 10.2165/00007256-200838060-00004
    1. Huang C. C., Tsai C. L., Wang H. S., Ding S. T., Lin H. F. (2015). Effects of different types of eccentric exercise on pulse wave velocity and adiponectin response. Phys. Educ. J. 48, 19–32. 10.3966/102472972015034801002
    1. Hyldahl R. D., Hubal M. J. (2014). Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve 49, 155–170. 10.1002/mus.24077
    1. Jamurtas A. Z., Garyfallopoulou A., Theodorou A. A., Zalavras A., Paschalis V., Deli C. K., et al. . (2013). A single bout of downhill running transiently increases HOMA-IR without altering adipokine response in healthy adult women. Eur. J. Appl. Physiol. 113, 2925–2932. 10.1007/s00421-013-2717-5
    1. Lark S. D., Pasupuleti S. (2009). Validity of a functional dynamic walking test for the elderly. Arch. Phys. Med. Rehabil. 90, 470–474. 10.1016/j.apmr.2008.08.221
    1. LaStayo P. C., Ewy G. A., Pierotti D. D., Johns R. K., Lindstedt S. (2003). The positive effects of negative work: increased muscle strength and decreased fall risk in a frail elderly population. J. Gerontol. A Biol. Med. Sci. 58, M419–M424. 10.1093/gerona/58.5.m419
    1. LaStayo P., Marcus R., Dibble L., Frajacomo F., Lindstedt S. (2014). Eccentric exercise in rehabilitation: safety, feasibility, and application. J. Appl. Physiol. (1985). 116, 1426–1434. 10.1152/japplphysiol.00008.2013
    1. Lee Y. S., Chang W. H., Lin T. C., Shiang T. Y. (2015). Does functional fitness decline in accordance with our expectation? – a pilot study in healthy female. BMC Sports Sci. Med. Rehabil. 7:17 10.1186/s13102-015-0012-y
    1. Marcus R. L., Smith S., Morrell G., Addison O., Dibble L. E., Wahoff-Stice D., et al. . (2008). Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus. Phys. Ther. 88, 1345–1354. 10.2522/ptj.20080124
    1. Mitchell W. K., Taivassalo T., Narici M. V., Franchi M. V. (2017). Eccentric exercise and the critically Ill patient. Front. Physiol. 8:120 10.3389/fphys.2017.00120
    1. Mueller M., Breil F. A., Vog M., Steiner R., Lippuner K., Popp A., et al. . (2009). Different response to eccentric and concentric training in older men and women. Eur. J. Appl. Physiol. 107, 145–153. 10.1007/s00421-009-1108-4
    1. Nelson M. E., Layne J. E., Bernstein M. J., Nuernberger A., Castaneda C., Kaliton D., et al. . (2004). The effects of multidimensional home-based exercise on functional performance in elderly people. J. Gerontol. A Biol. Sci. Med. Sci. 59, 154–160. 10.1093/gerona/59.2.M154
    1. Nickols-Richardson S. M., Miller L. E., Wootten D. F., Ramp W. K., Herbert W. G. (2007). Concentric and eccentric isokinetic resistance training similarly increases muscular strength, fat-free soft tissue mass, and specific bone mineral measurements in young women. Osteoporos. Int. 18, 789–796. 10.1007/s00198-006-0305-9
    1. Nogueira F. R., Libardi C. A., Vechin F. C., Lixandrao M. E., de Barros Berton R. P., de Souza T. M., et al. . (2013). Comparison of maximal muscle strength of elbow flexors and knee extensors between younger and older men with the same level of daily activity. Clin. Interv. Aging 8, 401–407. 10.2147/CIA.S41838
    1. Overend T. J., Versteegh T. H., Thompson E., Birmingham T. B., Vandervoort A. A. (2000). Cardiovascular stress associated with concentric and eccentric isokinetic exercise in young and older adults. J. Gerontol. A Biol. Sci. Med. Sci. 55, B177–B182. 10.1093/gerona/55.4.b177
    1. Paschalis V., Nikolaidis M. G., Theodorou A. A., Panayiotou G., Fatouros I. G., Koutedakis Y., et al. . (2011). A weekly bout of eccentric exercise is sufficient to induce health-promoting effects. Med. Sci. Sports Exerc. 43, 64–73. 10.1249/MSS.0b013e3181e91d90
    1. Peñailillo L., Blazevich A., Nosaka K. (2014). Energy expenditure and substrate oxidation during and after eccentric cycling. Eur. J. Appl. Physiol. 114, 805–814. 10.1007/s00421-013-2816-3
    1. Pedersen B. K., Saltin B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 25, 1–72. 10.1111/sms.12581
    1. Ploutz-Snyder L. L., Giamis E. L., Formikell M., Rosenbaum A. E. (2001). Resistance training reduces susceptibility to eccentric exercise-induced muscle dysfunction in older women. J. Gerontol. A Biol. Med. Sci. 56, B384–B390. 10.1093/gerona/56.9.b384
    1. Rikli R. E., Jones C. J. (1999). Functional fitness normative scores for community- residing older adults, ages 60-94. J. Aging Phys. Act. 7, 162–181. 10.1123/japa.7.2.162
    1. Roig M., O'Brien K., Kirk G., Murray R., McKinnon P., Shadgan B., et al. . (2009). The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults: a systematic review with meta- analysis. Br. J. Sports Med. 43, 556–568. 10.1136/bjsm.2008.051417
    1. Tracy B. L., Enoka R. M. (2002). Older adults are less steady during submaximal isometric contractions with the knee extensor muscles. J. Appl. Physiol. (1985). 92, 1004–1012. 10.1152/japplphysiol.00954.2001
    1. Vikne H., Refsnes P. E., Ekmark M., Medbø J. I., Gundersen V., Gundersen K. (2006). Muscular performance after concentric and eccentric exercise in trained men. Med. Sci. Sports Exerc. 38, 1770–1781. 10.1249/01.mss.0000229568.17284.ab
    1. Vogt M., Hoppeler H. H. (2014). Eccentric exercise: mechanisms and effects when used as training regime or training adjunct. J. Appl. Physiol. (1985). 116, 1446–1454. 10.1152/japplphysiol.00146.2013
    1. Wang H. H., Chen W. H., Liu C., Yang W. W., Huang M. Y., Shiang T. Y. (2014). Whole-body vibration combined with extra-load training for enhancing the strength and speed of track and field athletes. J. Strength Cond. Res. 28, 2470–2477. 10.1519/JSC.0000000000000437
    1. Zeppetzauer M., Drexel H., Vonbank A., Rein P., Aczel S., Saely C. H. (2013). Eccentric endurance exercise economically improves metabolic and inflammatory risk factors. Eur. J. Prevent. Cardiol. 20, 577–584. 10.1177/2047487312444236

Source: PubMed

3
Subscribe