Paired Associative Stimulation with High-Frequency Peripheral Component Leads to Enhancement of Corticospinal Transmission at Wide Range of Interstimulus Intervals

Anastasia Shulga, Aleksandra Zubareva, Pantelis Lioumis, Jyrki P Mäkelä, Anastasia Shulga, Aleksandra Zubareva, Pantelis Lioumis, Jyrki P Mäkelä

Abstract

Background: In spinal paired associative stimulation (PAS), orthodromic and antidromic volleys elicited by transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS) coincide at corticomotoneuronal synapses at the spinal cord. The interstimulus interval (ISI) between TMS and PNS determines whether PAS leads to motor-evoked potential (MEP) potentiation or depression. PAS applied as a long-term treatment for neurological patients might alter conduction of neural fibers over time. Moreover, measurements of motoneuron conductance for determination of ISIs may be challenging in these patients. Results: We sought to design a PAS protocol to induce MEP potentiation at wide range of ISIs. We tested PAS consisting of high-intensity (100% stimulator output, SO) TMS and high-frequency (50 Hz) PNS in five subjects at five different ISIs. Our protocol induced potentiation of MEP amplitudes in all subjects at all tested intervals. TMS and PNS alone did not result in MEP potentiation. The variant of PAS protocol described here does not require exact adjustment of ISIs in order to achieve effective potentiation of MEPs. Conclusions: This variant of PAS might be feasible as a long-term treatment in rehabilitation of neurological patients.

Keywords: paired associative stimulation; peripheral electrical stimulation; plasticity; spinal cord; transcranial magnetic stimulation.

Figures

Figure 1
Figure 1
(A) An average of 10 motor-evoked potentials (MEPs) recorded in a representative subject (subject 2). Blue—pre-paired associative stimulation (PAS)/peripheral nerve stimulation (PNS), red—post-PAS/PNS. (B) Summary of the results.

References

    1. Bunday K. L., Perez M. A. (2012). Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr. Biol. 22, 2355–2361. 10.1016/j.cub.2012.10.046
    1. Carson R. G., Kennedy N. C. (2013). Modulation of human corticospinal excitability by paired associative stimulation. Front. Hum. Neurosci. 7:823. 10.3389/fnhum.2013.00823
    1. Cortes M., Thickbroom G. W., Valls-Sole J., Pascual-Leone A., Edwards D. J. (2011). Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clin. Neurophysiol. 122, 2254–2259. 10.1016/j.clinph.2011.02.038
    1. Di Lazzaro V., Ziemann U., Lemon R. N. (2008). State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul. 1, 345–362. 10.1016/j.brs.2008.07.004
    1. Feldman D. E. (2012). The spike-timing dependence of plasticity. Neuron 75, 556–571. 10.1016/j.neuron.2012.08.001
    1. Gajraj N. M., Pennant J. H., Watcha M. F. (1994). Eutectic mixture of local anesthetics (EMLA) cream. Anesth. Analg. 78, 574–583. 10.1213/00000539-199403000-00026
    1. Leukel C., Taube W., Beck S., Schubert M. (2012). Pathway-specific plasticity in the human spinal cord. Eur. J. Neurosci. 35, 1622–1629. 10.1111/j.1460-9568.2012.08067.x
    1. Shulga A., Lioumis P., Kirveskari E., Savolainen S., Makela J. P., Ylinen A. (2015). The use of F-response in defining interstimulus intervals appropriate for LTP-like plasticity induction in lower limb spinal paired associative stimulation. J. Neurosci. Methods 242, 112–117. 10.1016/j.jneumeth.2015.01.012
    1. Shulga A., Lioumis P., Zubareva A., Brandstack N., Kuusela L., Kirveskari E., et al. (2016). Long-term paired associative stimulation can restore voluntary control over paralyzed muscles in incomplete chronic spinal cord injury patients. Spinal Cord Ser. Cases 2:16016 10.1038/scsandc.2016.16
    1. Sjöström P. J., Turrigiano G. G., Nelson S. B. (2001). Rate, timing and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, 1149–1164. 10.1016/s0896-6273(01)00542-6
    1. Stefan K., Kunesch E., Cohen L. G., Benecke R., Classen J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572–584. 10.1093/brain/123.3.572
    1. Taylor J. L., Martin P. G. (2009). Voluntary motor output is altered by spike-timing-dependent changes in the human corticospinal pathway. J. Neurosci. 29, 11708–11716. 10.1523/jneurosci.2217-09.2009
    1. Uy J., Ridding M. C., Hillier S., Thompson P. D., Miles T. S. (2003). Does induction of plastic change in motor cortex improve leg function after stroke? Neurology 61, 982–984. 10.1212/01.wnl.0000078809.33581.1f

Source: PubMed

3
Subscribe