The impact of binaural beats on creativity

Susan A Reedijk, Anne Bolders, Bernhard Hommel, Susan A Reedijk, Anne Bolders, Bernhard Hommel

Abstract

Human creativity relies on a multitude of cognitive processes, some of which are influenced by the neurotransmitter dopamine. This suggests that creativity could be enhanced by interventions that either modulate the production or transmission of dopamine directly, or affect dopamine-driven processes. In the current study we hypothesized that creativity can be influenced by means of binaural beats, an auditory illusion that is considered a form of cognitive entrainment that operates through stimulating neuronal phase locking. We aimed to investigate whether binaural beats affect creative performance at all, whether they affect divergent thinking, convergent thinking, or both, and whether possible effects may be mediated by the individual striatal dopamine level. Binaural beats were presented at alpha and gamma frequency. Participants completed a divergent and a convergent thinking task to assess two important functions of creativity, and filled out the Positive And Negative Affect Scale-mood State questionnaire (PANAS-S) and an affect grid to measure current mood. Dopamine levels in the striatum were estimated using spontaneous eye blink rates (EBRs). Results showed that binaural beats, regardless of the presented frequency, can affect divergent but not convergent thinking. Individuals with low EBRs mostly benefitted from alpha binaural beat stimulation, while individuals with high EBRs were unaffected or even impaired by both alpha and gamma binaural beats. This suggests that binaural beats, and possibly other forms of cognitive entrainment, are not suited for a one-size-fits-all approach, and that individual cognitive-control systems need to be taken into account when studying cognitive enhancement methods.

Keywords: alpha; binaural beats; cognitive enhancement; creativity; gamma.

Figures

Figure 1
Figure 1
Diagram of the task order in every session. Participants always completed the tasks in this order, regardless of beat frequency. Whether a participant completed the alternate uses task (AUT) before the remote associations task (RAT) (or vice versa) was randomized across participants.
Figure 2
Figure 2
Linear (solid line) and quadratic (dotted line) relationships between AUT flexibility benefit score from alpha frequency binaural beats and EBR (left-hand graph), and AUT flexibility benefit score from gamma frequency binaural beats and EBR (right-hand graph). Benefit scores were calculated by subtracting performance in the control condition from performance in the binaural beat condition (either alpha or gamma).
Figure 3
Figure 3
Linear (solid line) and quadratic (dotted line) relationships between RAT benefit score from alpha frequency binaural beats and EBR (left-hand graph), and RAT benefit score from gamma frequency binaural beats and EBR (right-hand graph). Benefit scores were calculated by subtracting performance in the control condition from performance in the binaural beat condition (either alpha or gamma).

References

    1. Akbari Chermahini S., Hickendorff M., Hommel B. (2012). Development and validity of a dutch version of the remote associates task: an item-response theory approach. Think. Skills Creat. 7, 177–186 10.1016/j.tsc.2012.02.003
    1. Akbari Chermahini S., Hommel B. (2010). The (b)link between creativity and dopamine: spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition 115, 458–465 10.1016/j.cognition.2010.03.007
    1. Akbari Chermahini S., Hommel B. (2012). More creative through positive mood? Not everyone! Front. Hum. Neurosci. 6:319 10.3389/fnhum.2012.00319
    1. Ashby F. G., Isen A. M., Turken A. U. (1999). A neuro-psychological theory of positive affect and its influence on cognition. Psychol. Rev. 106, 529–550 10.1037//0033-295x.106.3.529
    1. Baas M., De Dreu C. K. W., Nijstad B. A. (2008). A meta-analysis of 25 years of mood-creativity research: hedonic tone, activation or regulatory focus? Psychol. Bull. 134, 779–806 10.1037/a0012815.supp
    1. Barbato G., Ficca G., Muscettola G., Fichele M., Beatrice M., Rinaldi F. (2000). Diurnal variation in spontaneous eye-blink rate. Psychiatry Res. 93, 145–151 10.1016/s0165-1781(00)00108-6
    1. Bowden E. M., Jung-Beeman M., Fleck J., Kounios J. (2005). New approaches to demystifying insight. Trends Cogn. Sci. 9, 322–328 10.1016/j.tics.2005.05.012
    1. Cohen J. D., Braver T. S., Brown J. W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Curr. Opin. Neurobiol. 12, 223–229 10.1016/s0959-4388(02)00314-8
    1. Cools R., d’Esposito M. (2009). “Dopaminergic modulation of flexible cognitive control in humans,” in Dopamine Handbook, eds Björklund A., Dunnet S., Iversen L., Iversen S. (Oxford, UK: Oxford University Press: ), 249–260
    1. Davis M. A. (2009). Understanding the relationship between mood and creativity: a meta-analysis. Organ. Behav. Hum. Decis. Process. 108, 25–38 10.1016/j.obhdp.2008.04.001
    1. Davis K. L., Kahn R. S., Ko G., Davidson M. (1991). Dopamine in schizophrenia: a review and conceptualization. Am. J. Psychiatry 148, 1474–1486
    1. Dietrich A., Kanso R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol. Bull. 136, 822–848 10.1037/a0019749
    1. Eysenck H. J. (1993). Creativity and personality: suggestions for a theory. Psychol. Inq. 4, 147–178 10.1207/s15327965pli0403_1
    1. Fink A., Grabner R. H., Benedek M., Neubauer A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. Eur. J. Neurosci. 23, 2241–2246 10.1111/j.1460-9568.2006.04751.x
    1. Fink A., Grabner R. H., Benedek M., Reishofer G., Hauswirth V., Fally M., et al. (2009). The creative brain: investigation of brain activity during creative problem solving by means of EEG and fMRI. Hum. Brain Mapp. 30, 734–748 10.1002/hbm.20538
    1. Fink A., Neubauer A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: differential effects of sex and verbal intelligence. Int. J. Psychophysiol. 62, 46–53 10.1016/j.ijpsycho.2006.01.001
    1. Grace A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24 10.1016/0306-4522(91)90196-u
    1. Guilford J. P. (1950). Creativity. Am. Psychol. 5, 444–454 10.1037/h0063487
    1. Guilford J. P. (1967). The Nature of Human Intelligence. New York: McGraw-Hill
    1. Hommel B. (2012). “Convergent and divergent operations in cognitive search,” in Cognitive Search: Evolution, Algorithms, and the Brain, eds Todd P. M., Hills T. T., Robbins T. W. (Cambridge, MA: MIT Press; ), 221–235
    1. Karino S., Yumoto M., Itoh K., Uno A., Yamawaka K., Sekimoto S., et al. (2006). Neuromagnetic responses to binaural beat in human cerebral cortex. J. Neurophysiol. 96, 1927–1938 10.1152/jn.00859.2005
    1. Karson C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain 106, 643–653 10.1093/brain/106.3.643
    1. Keefe J. A., Magaro P. A. (1980). Creativity and schizophrenia: an equivalence of cognitive processing. J. Abnorm. Psychol. 89, 390–398 10.1037//0021-843x.89.3.390
    1. Keizer A. W., Verment R. S., Hommel B. (2009). Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. Neuroimage 49, 3404–3413 10.1016/j.neuroimage.2009.11.023
    1. Kuwada S., Yin T. C. T., Wickesberg R. E. (1979). Response of cat inferior colliculus neurons to binaural beat stimuli: possible mechanisms for sound localization. Science 206, 586–588 10.1126/science.493964
    1. Lane J. D., Kasian S. J., Owens J. E., Marsh G. R. (1998). Binaural auditory beats affect vigilance performance and mood. Physiol. Behav. 63, 249–252 10.1016/s0031-9384(97)00436-8
    1. Licklider J. C. R., Webster J. C., Hedlun J. M. (1950). On the frequency limits of binaural beats. J. Acoust. Soc. Am. 22, 468–473 10.1121/1.1906629
    1. McAlpine D., Jiang D., Palmer A. R. (1996). Interaural delay sensitivity and the classification of low best-frequency binaural responses in the inferior colliculus of the guinea pig. Hear. Res. 97, 136–152 10.1016/0378-5955(96)00068-8
    1. Nelson B., Rawlings D. (2008). Relating schizotypy and personality to the phenomenology of creativity. Schizophr. Bull. 36, 388–399 10.1093/fschbul/sbn098
    1. Nijstad B. A., De Dreu C. K. W., Rietzschel E. F., Baas M. (2010). The dual pathway to creativity model: creative ideation as a function of flexibility and persistence. Eur. Rev. Soc. Psychol. 21, 34–77 10.1080/10463281003765323
    1. Oster G. (1973). Auditory beats in the brain. Sci. Am. 229, 94–102 10.1038/scientificamerican1073-94
    1. Pratt H., Starr A., Mickalewski H. J., Dimitrijevic A., Bleich N., Mitterman N. (2009). Cortical evoked potentials to an auditory illusion: binaural beats. Clin. Neurophysiol. 120, 1514–1524 10.1016/j.clinph.2009.06.014
    1. Pratt H., Starr A., Mickalewski H. J., Dimitrijevic A., Bleich N., Mitterman N. (2010). A comparison of auditory evoked potentials to acoustic beats and to binaural beats. Hear. Res. 262, 34–44 10.1016/j.heares.2010.01.013
    1. Russell J. A., Weiss A., Mendelsohn G. A. (1989). Affect grid: a single-item scale of pleasure and arousal. J. Pers. Soc. Psychol. 57, 493–502 10.1037//0022-3514.57.3.493
    1. Schnitzler A., Gross J. (2005). Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296 10.1038/nrn1650
    1. Schwarz D. W. F., Taylor P. (2005). Human auditory steady state responses to binaural and monaural beats. Clin. Neurophysiol. 116, 658–668 10.1016/j.clinph.2004.09.014
    1. Shukla D. (1985). Blink rate as clinical indicator. Neurology 35, 286 10.1212/wnl.35.2.286
    1. Taylor J. R., Elsworth J. D., Lawrence M. S., Sladek J. R., Jr., Roth R. H., Redmond D. E., Jr. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Exp. Neurol. 158, 214–220 10.1006/exnr.1999.7093
    1. Turow G., Lane J. D. (2011). “Binaural beat stimulation: altering vigilance and mood states,” in Music, Science, and the Rhythmic Brain: Cultural and Clinical Implications, eds Berger J., Turow G. (New York, NY: Routledge; ), 122–136
    1. van Breukelen G. J., van Dijk K. R. (2007). Use of covariates in randomized controlled trials. J. Int. Neuropsychol. Soc. 13, 903–904 10.1017/s1355617707071147
    1. Vernon D. (2009). Human Potential: Exploring Techniques Used to Enhance Human Performance. London: Routledge
    1. Vernon D., Peryer G., Louch J., Shaw M. (2012). Tracking EEG changes in response to alpha and beta binaural beats. [Epub ahead of print]. Int. J. Psychophysiol. 10.1016/j.ijpsycho.2012.10.008
    1. von Stein A., Sarnthein J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313 10.1016/s0167-8760(00)00172-0
    1. Wallas G. (1926). The Art of Thought. New York: Harcourt Brace

Source: PubMed

3
Subscribe