Evaluation of the indirect impact of the 10-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine in a cluster-randomised trial

Hanna Rinta-Kokko, Arto A Palmu, Esa Ruokokoski, Heta Nieminen, Marta Moreira, Lode Schuerman, Dorota Borys, Jukka Jokinen, Hanna Rinta-Kokko, Arto A Palmu, Esa Ruokokoski, Heta Nieminen, Marta Moreira, Lode Schuerman, Dorota Borys, Jukka Jokinen

Abstract

Background: In the nation-wide double-blind cluster-randomised Finnish Invasive Pneumococcal disease trial (FinIP, ClinicalTrials.gov NCT00861380, NCT00839254), we assessed the indirect impact of the 10-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against five pneumococcal disease syndromes.

Methods: Children 6 weeks to 18 months received PHiD-CV10 in 48 clusters or hepatitis B/A-vaccine as control in 24 clusters according to infant 3+1/2+1 or catch-up schedules in years 2009-2011. Outcome data were collected from national health registers and included laboratory-confirmed and clinically suspected invasive pneumococcal disease (IPD), hospital-diagnosed pneumonia, tympanostomy tube placements (TTP) and outpatient antimicrobial prescriptions. Incidence rates in the unvaccinated population in years 2010-2015 were compared between PHiD-CV10 and control clusters in age groups <5 and ≥5 years (5-7 years for TTP and outpatient antimicrobial prescriptions), and in infants <3 months. PHiD-CV10 was introduced into the Finnish National Vaccination Programme (PCV-NVP) for 3-month-old infants without catch-up in 9/2010.

Results: From 2/2009 to 10/2010, 45398 children were enrolled. Vaccination coverage varied from 29 to 61% in PHiD-CV10 clusters. We detected no clear differences in the incidence rates between the unvaccinated cohorts of the treatment arms, except in single years. For example, the rates of vaccine-type IPD, non-laboratory-confirmed IPD and empyema were lower in PHiD-CV10 clusters compared to control clusters in 2012, 2015 and 2011, respectively, in the age-group ≥5 years.

Conclusions: This is the first report from a clinical trial evaluating the indirect impact of a PCV against clinical outcomes in an unvaccinated population. We did not observe consistent indirect effects in the PHiD-CV10 clusters compared to the control clusters. We consider that the sub-optimal trial vaccination coverage did not allow the development of detectable indirect effects and that the supervening PCV-NVP significantly diminished the differences in PHiD-CV10 vaccination coverage between the treatment arms.

Conflict of interest statement

The Finnish Institute for Health and Welfare (THL) received funding for the conduct of the FinIP study from the GSK group of companies. AAP, HN, ER, and JJ are employees of THL. HR-K was an employee of THL at the time of study conduct. DB and LS are employees of the GSK group of companies; MM was an employee of the GSK group of companies. MM, DB and LS have shares in the GSK group of companies. We note that several authors have an affiliation to the commercial funder of this research study: GlaxoSmithKline Biologicals SA. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Trial profile of 78 clusters.
Fig 1. Trial profile of 78 clusters.
The 3+1 and 2+1 clusters differed only for the infant schedules. Catch-up schedules were identical for the 3+1 and 2+1 clusters and were always combined for the analyses. For the indirect effect analysis, 72 clusters were included. * = Includes one subject withdrawn from the register follow-up during the blinded follow-up period. The figure has been presented previously [23].
Fig 2. Incidence of IPD by age…
Fig 2. Incidence of IPD by age group (in years) in PHiD-CV10 and control clusters, average over years 2010―2015.
(A) Incidence of all IPD. (B) Incidence of vaccine-type IPD.
Fig 3. Rates of clinically suspected IPD…
Fig 3. Rates of clinically suspected IPD by age group (in years) in PHiD-CV10 and control clusters, average over years 2010―2015.
(A) Incidence of hospital-diagnosed non-laboratory-confirmed IPD or unspecified sepsis. (B) Incidence of hospital-diagnosed non-laboratory-confirmed IPD.
Fig 4. Incidence of pneumonia by age…
Fig 4. Incidence of pneumonia by age group (in years) in PHiD-CV10 and control clusters, average over years 2010―2015.
(A) Incidence of hospital-diagnosed pneumonia. (B) Incidence of hospital-diagnosed empyema.
Fig 5. Incidence of tympanostomy tube placements…
Fig 5. Incidence of tympanostomy tube placements by age year in PHiD-CV10 and control clusters, average over years 2010―2015.
Fig 6. Incidence of outpatient antimicrobial prescriptions…
Fig 6. Incidence of outpatient antimicrobial prescriptions by age year in PHiD-CV10 and control clusters, average over years 2010―2015.

References

    1. Halloran ME, Haber M, Longini IM Jr., Struchiner CJ. Direct and indirect effects in vaccine efficacy and effectiveness. Am J Epidemiol. 1991;133(4):323–331. doi: 10.1093/oxfordjournals.aje.a115884
    1. Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012;11(7):841–855. doi: 10.1586/erv.12.53
    1. Ganaie F, Saad J, McGee L, van Tonder A, Bentley S, Lo S, et al.. A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral Streptococcus. mBio. 2020;11(3):e00937–20 doi: 10.1128/mBio.00937-20
    1. World Health Organization. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper–February 2019. Wkly Epidemiol Rec. 2019;94(8):85–104
    1. Weinberger D, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011;378:1962–73. doi: 10.1016/S0140-6736(10)62225-8
    1. Käyhty H, Auranen K, Nohynek H, Dagan R, Mäkelä H. Nasopharyngeal colonization: a target for pneumococcal vaccination. Expert Rev Vaccines. 2006;5(5):651–667. doi: 10.1586/14760584.5.5.651
    1. Cohen O, Knoll M, O’Brien K, Ramakrishnan M, Constenla D, Privor-Dumm L, et al.. Pneumococcal conjugate vaccine (PCV) product assessment. 2017; [Accessed 2021 May 29]. Available at:
    1. Whitney C, Farley M, Hadler J, Harrison L, Bennett N, Lynfield R, et al.. Decline in invasive pneumococcal disease after the introduction of protein–polysaccharide conjugate vaccine. N Engl J Med. 2003;348(18):1737–1746. doi: 10.1056/NEJMoa022823
    1. Lepoutre A, Varon E, Georges S, Gutmann L, Lévy-Bruhl D. Impact of infant pneumococcal vaccination on invasive pneumococcal diseases in France, 2001–2006. Euro Surveill 2008;13(35):18962. doi: 10.2807/ese.13.35.18962-en
    1. Ardanuy C, Tubau F, Pallares R, Calatayud L, Dominguez M, Rolo D, et al.. Epidemiology of invasive pneumococcal disease among adult patients in Barcelona before and after pediatric 7-valent pneumococcal conjugate vaccine introduction, 1997–2007. Clin Infect Dis. 2009;48(1):57–64. doi: 10.1086/594125
    1. Harboe Z, Dalby T, Weinberger D, Benfield T, Mølbak K, Slotved H, et al.. Impact of 13-valent pneumococcal conjugate vaccination in invasive pneumococcal disease incidence and mortality. Clin Infect Dis. 2014;59(8):1066–1073. doi: 10.1093/cid/ciu524
    1. Jokinen J, Rinta-Kokko H, Siira L, Palmu AA, Virtanen MJ, Nohynek H, et al.. Impact of ten-valent pneumococcal conjugate vaccination on invasive pneumococcal disease in Finnish children—a population-based study. PLoS One. 2015;10(3):e0120290. doi: 10.1371/journal.pone.0120290
    1. Moore MR, Link-Gelles R, Schaffner W, Lynfield R, Lexau C, Bennet NM, et al.. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis. 2015;15(3):301–309. doi: 10.1016/S1473-3099(14)71081-3
    1. Knol MJ, Wagenvoort GHJ, Sanders EAM, Elberse K, Vlaminckx BJ, de Melker HE, et al.. Invasive pneumococcal disease 3 years after introduction of 10-valent pneumococcal conjugate vaccine, the Netherlands. Emerg Infect Dis. 2015;21(11):2040–2044. doi: 10.3201/eid2111.140780
    1. Rodrigo C, Bewick T, Sheppard C, Greenwood S, Mckeever TM, Trotter CL, et al.. Impact of infant 13-valent pneumococcal conjugate vaccine on serotypes in adult pneumonia. Eur Respir J 2015;45(6):1632–1641. doi: 10.1183/09031936.00183614
    1. Guevara M, Barricarte A, Torroba L, Herranz M, Gil-Setas A, Gil F, et al.. Direct, indirect and total effects of 13-valent pneumococcal conjugate vaccination on invasive pneumococcal disease in children in Navarra, Spain, 2001 to 2014: cohort and case–control study. Euro Surveill. 2016;21(14):pii = 30186. doi: 10.2807/1560-7917.ES.2016.21.14.30186
    1. Andrade AL, Afonso ET, Minamisava R, Bierrenbach AL, Cristo EB, Morais-Neto OL, et al.. Direct and indirect impact of 10-valent pneumococcal conjugate vaccine introduction on pneumonia hospitalizations and economic burden in all age-groups in Brazil: A time-series analysis. PLoS One. 2017;12(9):e0184204. doi: 10.1371/journal.pone.0184204
    1. Hanquet G, Krizova P, Valentiner-Branth P, Ladhani SN, Nuorti JP, Lepoutre A, et al.. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax. 2019;74(5):473–482. doi: 10.1136/thoraxjnl-2018-211767
    1. Kahn R, Rid A, Smith PG, Eyal N, Lipsitch M. Choices in vaccine trial design in epidemics of emerging infections. Plos Med 2018;15(8):e1002632. doi: 10.1371/journal.pmed.1002632
    1. WHO Expert Committee on Biological Standardization. Guidelines on clinical evaluation of vaccines: regulatory expectations. Replacement of Annex 1 of WHO Technical Report Series, No. 924; [Accessed 2021 May 29]. Available at: .
    1. Palmu AA, Jokinen J, Borys D, Nieminen H, Ruokokoski E, Siira L, et al.. Effectiveness of the ten-valent pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against invasive pneumococcal disease: a cluster randomised trial. Lancet. 2013;381(9862):214–222. doi: 10.1016/S0140-6736(12)61854-6
    1. Vesikari T, Forsten A, Seppä I, Kaijalainen T, Puumalainen T, Soininen A, et al.. Effectiveness of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D–conjugated vaccine (PHiD-CV) against carriage and acute otitis media—a double-blind randomized clinical trial in Finland. J Pediatric Infect Dis Soc. 2016;5(3):237–248. doi: 10.1093/jpids/piw010
    1. Kilpi TM, Jokinen J, Puumalainen T, Nieminen H, Ruokokoski E, Rinta-Kokko H, et al.. Effectiveness of pneumococcal Haemophilus influenzae protein D conjugate vaccine against pneumonia in children: a cluster-randomised trial. Vaccine. 2018;36(39):5891–5901. doi: 10.1016/j.vaccine.2018.08.020
    1. Finnish Institute for Health and Welfare (THL), Finland. Health 2011 survey. Helsinki: THL; [Accessed 27 Jan 2020]. Available at:
    1. Finnish Institute for Health and Welfare (THL), Finland. The vaccination register. Helsinki: THL; [Accessed 27 Jan 2020]. Available from:
    1. Palmu AA, Jokinen J, Nieminen H, Rinta-Kokko H, Ruokokoski E, Puumalainen T, et al.. Effect of pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) on outpatient antimicrobial purchases: a double-blind, cluster randomised phase 3–4 trial. Lancet Infect Dis. 2014;14(3):205–212. doi: 10.1016/S1473-3099(13)70338-4
    1. Palmu AA, Jokinen J, Nieminen H, Syrjänen R, Ruokokoski E, Puumalainen T, et al.. Vaccine effectiveness of the pneumococcal Haemophilus influenzae protein D conjugate vaccine (PHiD-CV10) against clinically suspected invasive pneumococcal disease: a cluster-randomised trial. Lancet Respir Med. 2014;2(9):717–727. doi: 10.1016/S2213-2600(14)70139-0
    1. Palmu AA, Jokinen J, Nieminen H, Rinta-Kokko H, Ruokokoski E, Puumalainen T, et al.. Effectiveness of the ten-valent pneumococcal conjugate vaccine against tympanostomy tube placements in a cluster-randomized trial. Pediatr Infect Dis J. 2015;34(11):1230–1235. doi: 10.1097/INF.0000000000000857
    1. R: A Language and Environment for Statistical Computing. R Core Team. R Foundation for Statistical Computing, Vienna, Austria; [Accessed 29 May 2021]. Available at: .
    1. The Statistical Analysis System (SAS). Cary, NC, USA; [Accessed 29 May 2021]. Available at: . Lexau CA, Lynfield R, Danila R, Pilishvili T, Facklam R, Farley MM, et al.. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA. 2005;294(16):2043–2051. doi: 10.1001/jama.294.16.2043
    1. Vestrheim DF, Høiby EA, Bergsaker MR, Rønning K, Aaberge IS, Caugant DA. Indirect effect of conjugate pneumococcal vaccination in a 2+1 dose schedule. Vaccine. 2010;28(10):2214–2221. doi: 10.1016/j.vaccine.2009.12.054
    1. Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, et al.. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med. 2013;10(9):e1001517. doi: 10.1371/journal.pmed.1001517
    1. van der Linden M, Falkenhorst G, Perniciaro S, Imöhl M. Effects of infant pneumococcal conjugate vaccination on serotype distribution in invasive pneumococcal disease among children and adults in Germany. PLoS One. 2015;10(7):e0131494. doi: 10.1371/journal.pone.0131494
    1. Ladhani SN, Collins S, Djennad A, Sheppard CL, Borrow R, Fry NK, et al.. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–17: a prospective national observational cohort study. Lancet Infect Dis 2018;18(4):441–451. doi: 10.1016/S1473-3099(18)30052-5
    1. Corcoran M, Vickers I, Mereckiene J, Murchan S, Cotter S, Fitzgerald M, et al.. The epidemiology of invasive pneumococcal disease in older adults in the post-PCV era. Has there been a herd effect? Epidemiol. Infect. 2017;145(11):2390–2399. doi: 10.1017/S0950268817001194
    1. Naucler P, Galanis I, Morfeldt E, Darenberg J, Örtqvist A, Henriques-Normark B. Comparison of the impact of pneumococcal conjugate vaccine 10 or pneumococcal conjugate vaccine 13 on invasive pneumococcal disease in equivalent populations. Clin Infect Dis. 2017;65(11):1780–1789. doi: 10.1093/cid/cix685
    1. De Wals P, Lefebvre B, Deceuninck G, Longtin J. Incidence of invasive pneumococcal disease before and during an era of use of three different pneumococcal conjugate vaccines in Quebec. Vaccine. 2018;36(3):421–426. doi: 10.1016/j.vaccine.2017.11.054
    1. Richter L, Schmid D, Kanitz EE, Zwazl I, Pöllabauer E, Jasinska J, et al.. Invasive pneumococcal diseases in children and adults before and after introduction of the 10-valent pneumococcal conjugate vaccine into the Austrian national immunization program. PLoS One. 2019;14(1):e0210081. doi: 10.1371/journal.pone.0210081
    1. Menzies RI, Jardine A, McIntyre PB. Pneumonia in elderly Australians: reduction in presumptive pneumococcal hospitalizations but no change in all-cause pneumonia hospitalizations following 7-valent pneumococcal conjugate vaccination. Clin Infect Dis. 2015;61(6):927–933. doi: 10.1093/cid/civ429
    1. Nair H, Watts AT, Williams LJ, Omer SB, Simpson CR, Willocks LJ, et al.. Pneumonia hospitalisations in Scotland following the introduction of pneumococcal conjugate vaccination in young children. BMC Infect Dis. 2016;16:390. doi: 10.1186/s12879-016-1693-x
    1. Palmu AA, Rinta-Kokko H, Nohynek H, Nuorti JP, Kilpi TM, Jokinen J. Impact of ten-valent pneumococcal conjugate vaccine on pneumonia in Finnish children in a nation-wide population-based study. PLoS One. 2017:12(3):e0172690. doi: 10.1371/journal.pone.0172690
    1. Thorrington D, Andrews N, Stowe J, Miller E, van Hoek AJ. Elucidating the impact of the pneumococcal conjugate vaccine programme on pneumonia, sepsis and otitis media hospital admissions in England using a composite control. BMC Medicine 2018;16(1):13. doi: 10.1186/s12916-018-1004-z
    1. Okasha O, Rinta-Kokko H, Palmu AA, Ruokokoski E, Jokinen J, Nuorti JP. Population-level impact of infant 10-valent pneumococcal conjugate vaccination on adult pneumonia hospitalisations in Finland. Thorax. 2018;73(3):262–269. doi: 10.1136/thoraxjnl-2017-210440
    1. Kislaya I, Rodrigues AP, Sousa-Uva M, Gómez V, Gonçalves P, Froes F, et al.. Indirect effect of 7-valent and 13-valent pneumococcal conjugated vaccines on pneumococcal pneumonia hospitalizations in elderly. PLoS One. 2019;14(1):e0209428. doi: 10.1371/journal.pone.0209428
    1. Givon-Lavi N, Fraser D, Dagan R. Vaccination of day-care center attendees reduces carriage of Streptococcus pneumoniae among their younger siblings. Pediatr Infect Dis J. 2003;22(6):524–531. doi: 10.1097/01.inf.0000069760.65826.f2
    1. Hammitt LL, Bruden DL, Butler JC, Baggett HC, Hurlburt DA, Reasonover A, et al.. Indirect effect of conjugate vaccine on adult carriage of Streptococcus pneumoniae: an explanation of trends in invasive pneumococcal disease. J Infect Dis. 2006;193(11):1487–1494. doi: 10.1086/503805
    1. Flasche S, Van Hoek AJ, Sheasby E, Waight P, Andrews N, Sheppard C, et al.. Effect of pneumococcal conjugate vaccination on serotype-specific carriage and invasive disease in England: a cross-sectional study. PLoS Med. 2011;8(4):e1001017. doi: 10.1371/journal.pmed.1001017
    1. van Hoek AJ, Sheppard CL, Andrews NJ, Waight PA, Slack MPE, Harrison TG, et al.. Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England. Vaccine. 2014;32(34):4349–4355. doi: 10.1016/j.vaccine.2014.03.017
    1. Sigurdsson S, Erlendsdóttir H, Quirk SJ, Kristjánsson J, Hauksson K, Andrésdóttir BDI, et al.. Pneumococcal vaccination: direct and herd effect on carriage of vaccine types and antibiotic resistance in Icelandic children. Vaccine. 2017;35(39):5242–5248. doi: 10.1016/j.vaccine.2017.08.020
    1. Dunne EM, Satzke C, Ratu FT, Neal EFG, Boelsen LK, Matanitobua S, et al.. Effect of ten-valent pneumococcal conjugate vaccine introduction on pneumococcal carriage in Fiji: results from four annual cross-sectional carriage surveys. Lancet Glob Health. 2018;6(12):e1375–1385. doi: 10.1016/S2214-109X(18)30383-8
    1. Usuf E, Bottomley C, Bojang E, Cox I, Bojang A, Gladstone R, et al.. Persistence of nasopharyngeal pneumococcal vaccine serotypes and increase of nonvaccine serotypes among vaccinated infants and their mothers 5 years after introduction of pneumococcal conjugate vaccine 13 in the Gambia. Clin Infect Dis. 2019;68(9):1512–1521. doi: 10.1093/cid/ciy726
    1. Lewnard J, Hanage WP. Making sense of differences in pneumococcal serotype replacement. Lancet Infect Dis 2019;19(6):E213–20. doi: 10.1016/S1473-3099(18)30660-1
    1. Palmu AA, Toropainen M, Kaijalainen T, Siira L, Lahdenkari M, Nieminen H, et al.. Direct and indirect effectiveness of the 10-valent pneumococcal conjugate vaccine against carriage in a cluster randomized trial. Pediatr Infect Dis J. 2017;36(12):1193–1200. doi: 10.1097/INF.0000000000001705
    1. Hammitt LL, Akech DO, Morpeth SC, Karani A, Kihuha N, Nyongesa S, et al.. Population effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and non-typeable Haemophilus influenzae in Kilifi, Kenya: findings from cross-sectional carriage studies. Lancet Glob Health. 2014;2(7):e397–405. doi: 10.1016/S2214-109X(14)70224-4
    1. Palmu AA, Rinta-Kokko H, Nuorti JP, Nohynek H, Jokinen J. A pneumococcal conjugate vaccination programme reduced clinically suspected invasive disease in unvaccinated children. Acta Pædiatr. 2018;107(9):1610–1615. doi: 10.1111/apa.14335

Source: PubMed

3
Subscribe