Outcomes of Stenotrophomonas maltophilia hospital-acquired pneumonia in intensive care unit: a nationwide retrospective study

Philippe Guerci, Hugo Bellut, Mokhtar Mokhtari, Julie Gaudefroy, Nicolas Mongardon, Claire Charpentier, Guillaume Louis, Parvine Tashk, Clément Dubost, Stanislas Ledochowski, Antoine Kimmoun, Thomas Godet, Julien Pottecher, Jean-Marc Lalot, Emmanuel Novy, David Hajage, Adrien Bouglé, AZUREA research network, Jean-Michel Constantin, Thomas Godet, Philippe Guerci, Sebastien Perbet, Stanislas Ledochowski, Philippe Guerci, Hugo Bellut, Mokhtar Mokhtari, Julie Gaudefroy, Nicolas Mongardon, Claire Charpentier, Guillaume Louis, Parvine Tashk, Clément Dubost, Stanislas Ledochowski, Antoine Kimmoun, Thomas Godet, Julien Pottecher, Jean-Marc Lalot, Emmanuel Novy, David Hajage, Adrien Bouglé, AZUREA research network, Jean-Michel Constantin, Thomas Godet, Philippe Guerci, Sebastien Perbet, Stanislas Ledochowski

Abstract

Background: There is little descriptive data on Stenotrophomonas maltophilia hospital-acquired pneumonia (HAP) in critically ill patients. The optimal modalities of antimicrobial therapy remain to be determined. Our objective was to describe the epidemiology and prognostic factors associated with S. maltophilia pneumonia, focusing on antimicrobial therapy.

Methods: This nationwide retrospective study included all patients admitted to 25 French mixed intensive care units between 2012 and 2017 with hospital-acquired S. maltophilia HAP during intensive care unit stay. Primary endpoint was time to in-hospital death. Secondary endpoints included microbiologic effectiveness and antimicrobial therapeutic modalities such as delay to appropriate antimicrobial treatment, mono versus combination therapy, and duration of antimicrobial therapy.

Results: Of the 282 patients included, 84% were intubated at S. maltophilia HAP diagnosis for duration of 11 [5-18] days. The Simplified Acute Physiology Score II was 47 [36-63], and the in-hospital mortality was 49.7%. Underlying chronic pulmonary comorbidities were present in 14.1% of cases. Empirical antimicrobial therapy was considered effective on S. maltophilia according to susceptibility patterns in only 30% of cases. Delay to appropriate antimicrobial treatment had, however, no significant impact on the primary endpoint. Survival analysis did not show any benefit from combination antimicrobial therapy (HR = 1.27, 95%CI [0.88; 1.83], p = 0.20) or prolonged antimicrobial therapy for more than 7 days (HR = 1.06, 95%CI [0.6; 1.86], p = 0.84). No differences were noted in in-hospital death irrespective of an appropriate and timely empiric antimicrobial therapy between mono- versus polymicrobial S. maltophilia HAP (p = 0.273). The duration of ventilation prior to S. maltophilia HAP diagnosis and ICU length of stay were shorter in patients with monomicrobial S. maltophilia HAP (p = 0.031 and p = 0.034 respectively).

Conclusions: S. maltophilia HAP occurred in severe, long-stay intensive care patients who mainly required prolonged invasive ventilation. Empirical antimicrobial therapy was barely effective while antimicrobial treatment modalities had no significant impact on hospital survival.

Trial registration: clinicaltrials.gov, NCT03506191.

Keywords: Antimicrobial therapy; Combination therapy; Hospital-acquired pneumonia; Intensive care; Stenotrophomonas maltophilia.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of the inclusion of patients presenting with Stenotrophomonas maltophilia hospital-acquired pneumonia. Asterisk indicates that sample can be from lower respiratory tract, blood, wound/skin, or urine
Fig. 2
Fig. 2
a Antibiotic susceptibility of Stenotrophomonas maltophilia strains isolated from the respiratory tract samples (n = 282). b Efficient antibiotic treatments prescribed to treat Stenotrophomonas maltophilia hospital-acquired pneumonia. Antibiotic susceptibility is depicted in percentage (%) of isolates that were susceptible, intermediate, and resistant or when the antibiotic treatment was not assayed

References

    1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370:1198–1208. doi: 10.1056/NEJMoa1306801.
    1. Healthcare-associated infections in intensive care units - Annual Epidemiological Report for 2015. European Centre for Disease Prevention and Control. 2017. Available from: . [cited 2018 Aug 27]
    1. Nseir S, Di Pompeo C, Brisson H, Dewavrin F, Tissier S, Diarra M, et al. Intensive care unit-acquired Stenotrophomonas maltophilia: incidence, risk factors, and outcome. Crit Care. 2006;10:R143. doi: 10.1186/cc5063.
    1. Saugel B, Eschermann K, Hoffmann R, Hapfelmeier A, Schultheiss C, Phillip V, et al. Stenotrophomonas maltophilia in the respiratory tract of medical intensive care unit patients. Eur J Clin Microbiol Infect Dis. 2012;31:1419–1428. doi: 10.1007/s10096-011-1459-8.
    1. Metan G, Hayran M, Hascelik G, Uzun O. Which patient is a candidate for empirical therapy against Stenotrophomonas maltophilia bacteraemia? An analysis of associated risk factors in a tertiary care hospital. Scand J Infect Dis. 2006;38:527–531. doi: 10.1080/00365540500452481.
    1. Hanes SD, Demirkan K, Tolley E, Boucher BA, Croce MA, Wood GC, et al. Risk factors for late-onset nosocomial pneumonia caused by Stenotrophomonas maltophilia in critically ill trauma patients. Clin Infect Dis. 2002;35:228–235. doi: 10.1086/341022.
    1. Falagas ME, Kastoris AC, Vouloumanou EK, Rafailidis PI, Kapaskelis AM, Dimopoulos G. Attributable mortality of Stenotrophomonas maltophilia infections: a systematic review of the literature. Future Microbiol. 2009;4:1103–1109. doi: 10.2217/fmb.09.84.
    1. Leone M, Constantin J-M, Dahyot-Fizelier C, Duracher-Gout C, Joannes-Boyau O, Langeron O, et al. French intensive care unit organisation. Anaesth Crit Care Pain Med. 2018;37:625–627. doi: 10.1016/j.accpm.2018.10.011.
    1. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT) Eur Respir J. 2017;50:1700582. doi: 10.1183/13993003.00582-2017.
    1. Raoof S, Baumann MH, Critical Care Societies Collaborative. An official multi-society statement: ventilator-associated events: the new definition Crit Care Med 2014;42:228–229.
    1. Acute Respiratory Distress Syndrome The Berlin definition. JAMA. 2012;307:2526–2533.
    1. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–111. doi: 10.1093/cid/ciw353.
    1. Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. 2014;20:255–266. doi: 10.1111/1469-0691.12373.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Toulouse E, Masseguin C, Lafont B, McGurk G, Harbonn A, Roberts AJ, et al. French legal approach to clinical research. Anaesth Crit Care Pain Med. 2018;37:607–614. doi: 10.1016/j.accpm.2018.10.013.
    1. Austin PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10:150–161. doi: 10.1002/pst.433.
    1. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46:399–424. doi: 10.1080/00273171.2011.568786.
    1. Resche-Rigon M, Pirracchio R, Robin M, De Latour RP, Sibon D, Ades L, et al. Estimating the treatment effect from non-randomized studies: the example of reduced intensity conditioning allogeneic stem cell transplantation in hematological diseases. BMC Blood Disord. 2012;12:10. doi: 10.1186/1471-2326-12-10.
    1. Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, et al. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med. 2013;39:672–681. doi: 10.1007/s00134-012-2808-5.
    1. Gopalakrishnan R, Hawley HB, Czachor JS, Markert RJ, Bernstein JM. Stenotrophomonas maltophilia infection and colonization in the intensive care units of two community hospitals: a study of 143 patients. Heart Lung. 1999;28:134–141. doi: 10.1053/hl.1999.v28.a96418.
    1. Villarino ME, Stevens LE, Schable B, Mayers G, Miller JM, Burke JP, et al. Risk factors for epidemic Xanthomonas maltophilia infection/colonization in intensive care unit patients. Infect Control Hosp Epidemiol. 1992;13:201–206. doi: 10.2307/30147098.
    1. Maningo E, Watanakunakorn C. Xanthomonas maltophilia and Pseudomonas cepacia in lower respiratory tracts of patients in critical care units. J Inf Secur. 1995;31:89–92.
    1. Pathmanathan A, Waterer GW. Significance of positive Stenotrophomonas maltophilia culture in acute respiratory tract infection. Eur Respir J. 2005;25:911–914. doi: 10.1183/09031936.05.00096704.
    1. Bekaert M, Timsit J-F, Vansteelandt S, Depuydt P, Vésin A, Garrouste-Orgeas M, et al. Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis. Am J Respir Crit Care Med. 2011;184:1133–1139. doi: 10.1164/rccm.201105-0867OC.
    1. Barbier F, Lisboa T, Nseir S. Understanding why resistant bacteria are associated with higher mortality in ICU patients. Intensive Care Med. 2016;42:2066–2069. doi: 10.1007/s00134-015-4138-x.
    1. Lee M-R, Wang H-C, Yang C-Y, Lin C-K, Kuo H-Y, Ko J-C, et al. Clinical characteristics and outcomes of patients with pleural infections due to Stenotrophomonas maltophilia at a medical center in Taiwan, 2004–2012. Eur J Clin Microbiol Infect Dis. 2014;33:1143–1148. doi: 10.1007/s10096-014-2060-8.
    1. Garcia Paez JI, Tengan FM, Barone AA, Levin AS, Costa SF. Factors associated with mortality in patients with bloodstream infection and pneumonia due to Stenotrophomonas maltophilia. Eur J Clin Microbiol Infect Dis. 2008;27:901–906. doi: 10.1007/s10096-008-0518-2.
    1. Chawla K, Vishwanath S, Gupta A. Stenotrophomonas maltophilia in lower respiratory tract infections. J Clin Diagn Res. 2014;8:DC20–DC22.
    1. Batra P, Mathur P, Misra MC. Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia infections. J Lab Physicians. 2017;9:132–135. doi: 10.4103/0974-2727.199639.
    1. Fujita J, Yamadori I, Xu G, Hojo S, Negayama K, Miyawaki H, et al. Clinical features of Stenotrophomonas maltophilia pneumonia in immunocompromised patients. Respir Med. 1996;90:35–38. doi: 10.1016/S0954-6111(96)90242-5.
    1. De Bus L, Denys W, Catteeuw J, Gadeyne B, Vermeulen K, Boelens J, et al. Impact of de-escalation of beta-lactam antibiotics on the emergence of antibiotic resistance in ICU patients: a retrospective observational study. Intensive Care Med. 2016;42:1029–1039. doi: 10.1007/s00134-016-4301-z.
    1. Kollef MH. Is antibiotic cycling the answer to preventing the emergence of bacterial resistance in the intensive care unit? Clin Infect Dis. 2006;43:S82–S88. doi: 10.1086/504484.
    1. Soubirou J-F, Gault N, Alfaiate T, Lolom I, Tubach F, Andremont A, et al. Ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacilli in an intensive care unit without carbapenemase-producing Enterobacteriaceae or epidemic Acinetobacter baumannii. Scand J Infect Dis. 2014;46:215–220. doi: 10.3109/00365548.2013.871644.
    1. Bouadma L, Deslandes E, Lolom I, Le Corre B, Mourvillier B, Regnier B, et al. Long-term impact of a multifaceted prevention program on ventilator-associated pneumonia in a medical intensive care unit. Clin Infect Dis. 2010;51:1115–1122. doi: 10.1086/656737.
    1. Álvarez-Lerma F, Grau S, Echeverría-Esnal D, Martínez-Alonso M, Gracia-Arnillas MP, Horcajada JP, et al. A before-and-after study of the effectiveness of an antimicrobial stewardship program in critical care. Antimicrob Agents Chemother. 2018;62:e01825–e01817. doi: 10.1128/AAC.01825-17.
    1. Lindsay PJ, Rohailla S, Taggart LR, Lightfoot D, Havey T, Daneman N, et al. Antimicrobial stewardship and intensive care unit mortality: a systematic review. Clin Infect Dis. 2019;68:748–756. doi: 10.1093/cid/ciy550.
    1. Luyt C-E, Bréchot N, Trouillet J-L, Chastre J. Antibiotic stewardship in the intensive care unit. Crit Care. 2014;18:480. doi: 10.1186/s13054-014-0480-6.
    1. Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26:185–230. doi: 10.1128/CMR.00059-12.
    1. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122:262–268. doi: 10.1378/chest.122.1.262.
    1. Planquette B, Timsit J-F, Misset BY, Schwebel C, Azoulay E, Adrie C, et al. Pseudomonas aeruginosa ventilator-associated pneumonia. Predictive factors of treatment failure. Am J Respir Crit Care Med. 2013;188:69–76. doi: 10.1164/rccm.201210-1897OC.
    1. Peña C, Gómez-Zorrilla S, Oriol I, Tubau F, Dominguez MA, Pujol M, et al. Impact of multidrug resistance on Pseudomonas aeruginosa ventilator-associated pneumonia outcome: predictors of early and crude mortality. Eur J Clin Microbiol Infect Dis. 2013;32:413–420. doi: 10.1007/s10096-012-1758-8.
    1. Chastre J, Wolff M, Fagon J-Y, Chevret S, Thomas F, Wermert D, et al. Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA. 2003;290:2588–2598. doi: 10.1001/jama.290.19.2588.
    1. Shah MD, Coe KE, El Boghdadly Z, Wardlow LC, Dela-Pena JC, Stevenson KB, et al. Efficacy of combination therapy versus monotherapy in the treatment of Stenotrophomonas maltophilia pneumonia. J Antimicrob Chemother. 2019;74:2055–2059. doi: 10.1093/jac/dkz116.
    1. Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int J Antimicrob Agents. 2014;43:328–334. doi: 10.1016/j.ijantimicag.2014.01.007.
    1. Tsiodras S, Pittet D, Carmeli Y, Eliopoulos G, Boucher H, Harbarth S. Clinical implications of Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole: a study of 69 patients at 2 university hospitals. Scand J Infect Dis. 2000;32:651–656. doi: 10.1080/003655400459577.
    1. Hachem R, Reitzel R, Rolston K, Chaftari AM, Raad I. Antimicrobial Activities of Ceftazidime-Avibactam and Comparator Agents against clinical bacteria isolated from patients with cancer. Antimicrob Agents Chemother. 2017;61(4).
    1. Mojica MF, Papp-Wallace KM, Taracila MA, Barnes MD, Rutter JD, Jacobs MR, et al. Avibactam restores the susceptibility of clinical isolates of Stenotrophomonas maltophilia to aztreonam. Antimicrob Agents Chemother. 2017;61(10).
    1. Mojica MF, Ouellette CP, Leber A, Becknell MB, Ardura MI, Perez F, et al. Successful treatment of bloodstream infection due to metallo-β-lactamase-producing Stenotrophomonas maltophilia in a renal transplant patient. Antimicrob Agents Chemother. 2016;60:5130–5134. doi: 10.1128/AAC.00264-16.
    1. Veiga RP, Paiva J-A. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care. 2018;22:233. doi: 10.1186/s13054-018-2155-1.
    1. Berton DC, Kalil AC, Teixeira PJ. Quantitative versus qualitative cultures of respiratory secretions for clinical outcomes in patients with ventilator-associated pneumonia. Cochrane Database Syst Rev. 2014;(10):CD006482.

Source: PubMed

3
Subscribe