Immune Checkpoint Inhibitors in pMMR Metastatic Colorectal Cancer: A Tough Challenge

Federica Marmorino, Alessandra Boccaccino, Marco Maria Germani, Alfredo Falcone, Chiara Cremolini, Federica Marmorino, Alessandra Boccaccino, Marco Maria Germani, Alfredo Falcone, Chiara Cremolini

Abstract

The introduction of checkpoint inhibitors provided remarkable achievements in several solid tumors but only 5% of metastatic colorectal cancer (mCRC) patients, i.e., those with bearing microsatellite instable (MSI-high)/deficient DNA mismatch repair (dMMR) tumors, benefit from this approach. The favorable effect of immunotherapy in these patients has been postulated to be due to an increase in neoantigens due to their higher somatic mutational load, also associated with an abundant infiltration of immune cells in tumor microenvironment (TME). While in patients with dMMR tumors checkpoint inhibitors allow achieving durable response with dramatic survival improvement, current results in patients with microsatellite stable (MSS or MSI-low)/proficient DNA mismatch repair (pMMR) tumors are disappointing. These tumors show low mutational load and absence of "immune-competent" TME, and are intrinsically resistant to immune checkpoint inhibitors. Modifying the interplay among cancer cells, TME and host immune system is the aim of multiple lines of research in order to enhance the immunogenicity of pMMR mCRC, and exploit immunotherapy also in this field. Here, we focus on the rationale behind ongoing clinical trials aiming at extending the efficacy of immunotherapy beyond the MSI-high/dMMR subgroup with particular regard to academic no-profit studies.

Keywords: immune checkpoint inhibitors; metastatic colorectal cancer; microsatellite stable; proficient DNA mismatch repair.

Conflict of interest statement

Federica Marmorino, Alessandra Boccaccino and Marco Maria Germani declare no conflict of interest. Alfredo Falcone has received honoraria from Amgen, Lilly, Merck, Roche, and SERVIER; research funding from Amgen (Inst), Bayer (Inst), Merck (Inst), MSD (Inst), Roche (Inst), Sanofi (Inst), and SERVIER (Inst); funding for travel accommodations, expenses from Amgen, Bayer, Merck, Roche, and SERVIER; served as consultant and advisory role for Amgen, Bayer, Bristol-Myers Squibb, Lilly, Merck, Roche, and SERVIER. Chiara Cremolini received honoraria from Amgen, Bayer, Roche, and SERVIER; research funding from Merck; funding for travel accommodations, expenses from Roche and SERVIER; served as consultant or advisory role for Amgen, Bayer, and Roche; as member of the Speakers’ Bureau for SERVIER.

Figures

Figure 1
Figure 1
Approaches to enhance immunogenicity of proficient mismatch repair (pMMR) colorectal cancer. CTL: cytotoxic Lymphocytes; BRAFi: BRAF inhibitors; EGFRi: EGFR inhibitors; MEKi: MEK inhibitors; TME: Tumor Microenvironment.

References

    1. Havel J.J., Chowell D., Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer. 2019;19:133–150. doi: 10.1038/s41568-019-0116-x.
    1. Kalyan A., Kircher S., Shah H., Mulcahy M., Benson A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol. 2018;9:160–169. doi: 10.21037/jgo.2018.01.17.
    1. Ganesh K., Stadler Z.K., Cercek A., Mendelsohn R.B., Shia J., Segal N.H., Diaz L.A. Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019;16:361–375. doi: 10.1038/s41575-019-0126-x.
    1. Overman M.J., Lonardi S., Wong K.Y.M., Lenz H.-J., Gelsomino F., Aglietta M., Morse M.A., Van Cutsem E., McDermott R., Hill A., et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair—Deficient/microsatellite instability—High metastatic colorectal cancer. JCO. 2018;36:773–779. doi: 10.1200/JCO.2017.76.9901.
    1. Overman M.J., Lonardi S., Wong K.Y.M., Lenz H.-J., Gelsomino F., Aglietta M., Morse M., Van Cutsem E., McDermott R.S., Hill A.G., et al. Nivolumab (NIVO) + low-dose ipilimumab (IPI) in previously treated patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): Long-term follow-up. JCO. 2019;37:635. doi: 10.1200/JCO.2019.37.4_suppl.635.
    1. Andre T., Shiu K.-K., Kim T.W., Jensen B.V., Jensen L.H., Punt C.J.A., Smith D.M., Garcia-Carbonero R., Benavides M., Gibbs P., et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 Study; Proceedings of the ASCO Annual Meeting 2020, Virtual Scientific Program; Chicago, IL, USA. 29–31 May 2020.
    1. FDA Approves Pembrolizumab for First-Line Treatment of MSI-H/dMMR Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–2087.e3. doi: 10.1053/j.gastro.2009.12.064.
    1. Hegde P.S., Karanikas V., Evers S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 2016;22:1865–1874. doi: 10.1158/1078-0432.CCR-15-1507.
    1. Becht E., de Reyniès A., Giraldo N.A., Pilati C., Buttard B., Lacroix L., Selves J., Sautès-Fridman C., Laurent-Puig P., Fridman W.H. Immune and Stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy. Clin. Cancer Res. 2016;22:4057–4066. doi: 10.1158/1078-0432.CCR-15-2879.
    1. Giannakis M., Mu X.J., Shukla S.A., Qian Z.R., Cohen O., Nishihara R., Bahl S., Cao Y., Amin-Mansour A., Yamauchi M., et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15:857–865. doi: 10.1016/j.celrep.2016.03.075.
    1. Salem M.E., Bodor J.N., Puccini A., Xiu J., Goldberg R.M., Grothey A., Korn W.M., Shields A.F., Worrilow W.M., Kim E.S., et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int. J. Cancer. 2020 doi: 10.1002/ijc.33115.
    1. FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors. [(accessed on 17 July 2020)]; Available online: .
    1. Marabelle A., Le D.T., Ascierto P.A., Di Giacomo A.M., De Jesus-Acosta A., Delord J.-P., Geva R., Gottfried M., Penel N., Hansen A.R., et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 2020;38:1–10. doi: 10.1200/JCO.19.02105.
    1. Kim J.Y., Kronbichler A., Eisenhut M., Hong S.H., van der Vliet H.J., Kang J., Shin J.I., Gamerith G. Tumor mutational burden and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers. 2019;11:1798. doi: 10.3390/cancers11111798.
    1. O’Neil B.H., Wallmark J., Lorente D., Elez E., Raimbourg J., Gomez-Roca C., Ejadi S., Piha-Paul S.A., Moss R.A., Siu L.L., et al. 502 Pembrolizumab (MK-3475) for patients (pts) with advanced colorectal carcinoma (CRC): Preliminary results from KEYNOTE-028. Eur. J. Cancer. 2015;51:S103. doi: 10.1016/S0959-8049(16)30304-5.
    1. Picard E., Verschoor C.P., Ma G.W., Pawelec G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol. 2020;11:369. doi: 10.3389/fimmu.2020.00369.
    1. Grothey A., Tabernero J., Arnold D., De Gramont A., Ducreux M.P., O#x2019;Dwyer P.J., van Cutsem E., Bosanac I., Srock S., Mancao C., et al. CCTG CO.26: Updated analysis and impact of plasma-detected microsatellite stability (MSS) and tumor mutation burden (TMB) in a phase II trial of durvalumab (D) plus tremelimumab (T) and best supportive care (BSC) versus BSC alone in patients (pts) with refractory metastatic colorectal carcinoma (rmCRC); Proceedings of the ASCO Annual Meeting 2019; Chicago, IL, USA. 31 May–4 June 2019.
    1. Chen E.X., Jonker D.J., Loree J.M., Kennecke H.F., Berry S.R., Couture F., Ahmad C.E., Goffin J.R., Kavan P., Harb M., et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: The canadian cancer trials group CO.26 study. JAMA Oncol. 2020;6:831–838. doi: 10.1001/jamaoncol.2020.0910.
    1. Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–723. doi: 10.1016/j.cell.2017.01.017.
    1. Shahda S., Noonan A.M., Bekaii-Saab T.S., O’Neil B.H., Sehdev A., Shaib W.L., Helft P.R., Loehrer P.J., Tong Y., Liu Z., et al. A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer. JCO. 2017;35:3541. doi: 10.1200/JCO.2017.35.15_suppl.3541.
    1. Grothey A., Tabernero J., Arnold D., De Gramont A., Ducreux M.P., O’Dwyer P.J., van Cutsem E., Bosanac I., Srock S., Mancao C., et al. Fluoropyrimidine (FP) + bevacizumab (BEV) + atezolizumab vs FP/BEV in BRAFwt metastatic colorectal cancer (mCRC): Findings from Cohort 2 of MODUL—A multicenter randomized trial of biomarker driven maintenance treatment following first line induction therapy; Proceedings of the ESMO Congress 2018; Munich, Germany. 19–23 October 2018.
    1. Mettu N.B., Twohy E., Ou F.-S., Halfdanarson T.R., Lenz H.J., Breakstone R., Boland P.M., Crysler O., Wu C., Grothey A., et al. 533PD—BACCI: A phase II randomized, double-blind, multicenter, placebo-controlled study of capecitabine (C) bevacizumab (B) plus atezolizumab (A) or placebo (P) in refractory metastatic colorectal cancer (mCRC): An ACCRU network study. Ann. Oncol. 2019;30:v203. doi: 10.1093/annonc/mdz246.011.
    1. Wallin J., Pishvaian M.J., Hernandez G., Yadav M., Jhunjhunwala S., Delamarre L., He X., Powderly J., Lieu C., Eckhardt S.G., et al. Abstract 2651: Clinical activity and immune correlates from a phase Ib study evaluating atezolizumab (anti-PDL1) in combination with FOLFOX and bevacizumab (anti-VEGF) in metastatic colorectal carcinoma. Cancer Res. 2016;76:2651. doi: 10.1158/1538-7445.AM2016-2651.
    1. FOLFOXIRI + Bev + Atezo vs FOLFOXIRI + Bev as First-Line Treatment of Unresectable Metastatic Colorectal Cancer Patients. [(accessed on 17 July 2020)]; Available online: .
    1. Stein A., Binder M., Goekkurt E., Lorenzen S., Riera-Knorrenschild J., Depenbusch R., Ettrich T.J., Doerfel S., Al-Batran S.-E., Karthaus M., et al. Avelumab and cetuximab in combination with FOLFOX in patients with previously untreated metastatic colorectal cancer (MCRC): Final results of the phase II AVETUX trial (AIO-KRK-0216); Proceedings of the 2020 Gastrointestinal Cancer Symposium; San Francisco, CA, USA. 15–17 January 2020.
    1. Troiani T., Martinelli E., Ciardiello D., Zanaletti N., Cardone C., Borrelli C., Avallone A., Falcone A., Maiello E., Bordonaro R., et al. Phase II study of avelumab in combination with cetuximab in pre-treated RAS wild-type metastatic colorectal cancer patients: CAVE (cetuximab-avelumab) Colon; Proceedings of the 2019 Gastrointestinal Cancer Symposium; San Francisco, CA, USA. 17–19 January 2019.
    1. Fukuoka S., Hara H., Takahashi N., Kojima T., Kawazoe A., Asayama M., Yoshii T., Kotani D., Tamura H., Mikamoto Y., et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: An open-label, dose-escalation, and dose-expansion phase IB trial (REGONIVO, EPOC1603) J. Clin. Oncol. 2020;38:2053–2061. doi: 10.1200/JCO.19.03296.
    1. Kim R. Phase I/IB study of regorafenib and nivolumab in mismatch repair (MMR) proficient advanced refractory colorectal cancer; Proceedings of the ESMO World GI 2020—Virtual; Barcelona, Spain. 1–4 July 2020.
    1. Cousin S., Bellera C.A., Guégan J.P., Gomez-Roca C.A., Metges J.-P., Adenis A., Pernot S., Cantarel C., Kind M., Toulmonde M. REGOMUNE: A phase II study of regorafenib plus avelumab in solid tumors—Results of the non-MSI-H metastatic colorectal cancer (mCRC) cohort; Proceedings of the ASCO Annual Meeting 2020, Virtual Scientific Program; Chicago, IL, USA. 29–31 May 2020.
    1. Parikh A.R., Clark J.W., Wo J.Y.-L., Yeap B.Y., Allen J.N., Blaszkowsky L.S., Ryan D.P., Giantonio B.J., Weekes C.D., Zhu A.X., et al. A phase II study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC); Proceedings of the ASCO Annual Meeting 2019; Chicago, IL, USA. 31 May–4 June 2019.
    1. Nivolumab Plus FOLFOXIRI/Bevacizumab in First Line Chemotherapy of Advanced Colorectal Cancer RASm/BRAFm Patients (NIVACOR) [(accessed on 17 July 2020)]; Available online: .
    1. Martinelli E., Ciardiello D., Martini G., Troiani T., Cardone C., Vitiello P.P., Normanno N., Rachiglio A.M., Maiello E., Latiano T., et al. Implementing anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer: Challenges and future perspectives. Ann. Oncol. 2020;31:30–40. doi: 10.1016/j.annonc.2019.10.007.
    1. Pembrolizumab in MMR-Proficient Metastatic Colorectal Cancer Pharmacologically Primed to Trigger Hypermutation Status (ARETHUSA) [(accessed on 17 July 2020)]; Available online: .
    1. NIVOLUMAB Plus IPILIMUMAB and TEMOZOLOMIDE in Microsatellite Stable, MGMT Silenced Metastatic Colorectal Cancer (MAYA) [(accessed on 17 July 2020)]; Available online: .
    1. Study on the Effectiveness and Safety of the Combination of the Two Drugs Regorafenib and Nivolumab in Patients with Colorectal Cancer (Cancer of the Colon or Rectum Classified as Proficient Mismatch Repair and Microsatellite Stable) [(accessed on 17 July 2020)]; Available online: .
    1. Regorafenib and Pembrolizumab in Treating Participants with Advanced or Metastatic Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Efficacy and Safety of Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) in Previously Treated Participants with Select Solid Tumors (MK-7902-005/E7080-G000-224/LEAP-005) [(accessed on 17 July 2020)]; Available online: .
    1. Immunotherapy in Locally Advanced Rectal Cancer (AVANA) [(accessed on 17 July 2020)]; Available online: .
    1. The Combination of Immunotherapy and Neoadjuvant Chemoradiotherapy in MSS Locally Advanced Rectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Trial of Nivolumab with FOLFOX after Chemoradiation in Rectal Cancer Patients. [(accessed on 17 July 2020)]; Available online: .
    1. Neo-adjuvant Pembrolizumab and Radiotherapy in Localised MSS Rectal Cancer (PEMREC) [(accessed on 17 July 2020)]; Available online: .
    1. Neoadjuvant Treatment in Rectal Cancer with Radiotherapy Followed by Atezolizumab and Bevacizumab (TARZAN) [(accessed on 17 July 2020)]; Available online: .
    1. Assess the Efficacy of Pembrolizumab Plus Radiotherapy or Ablation in Metastatic Colorectal Cancer Patients. [(accessed on 17 July 2020)]; Available online: .
    1. A Clinical Trial of Durvalumab and Tremelimumab, Administered with Radiation Therapy or Ablation in Patients with Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Atezolizumab with Stereotactic Ablative Radiotherapy in Patients with Metastatic Tumours (SABR-PDL1) [(accessed on 17 July 2020)]; Available online: .
    1. Durvalumab and Tremelimumab With or Without High or Low-Dose Radiation Therapy in Treating Patients with Metastatic Colorectal or Non-small Cell Lung Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Regorafenib and Nivolumab in Combination with Radiotherapy for pMMR/MSS Metastatic Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Phase II Study of Toripalimab Plus Stereotactic Body Radiotherapy in Colorectal Cancer Patients with Oligometastasis. [(accessed on 17 July 2020)]; Available online: .
    1. PI Pembro in Combination with Stereotactic Body Radiotherapy for Liver Metastatic Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Camrelizumab Combined with Apatinib, XELOX, RFA in the Treatment of Liver Metastases of Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Immunotherapy with Y90-RadioEmbolization for Metastatic Colorectal Cancer. [(accessed on 12 August 2020)]; Available online: .
    1. Hallin J., Engstrom L.D., Hargis L., Calinisan A., Aranda R., Briere D.M., Sudhakar N., Bowcut V., Baer B.R., Ballard J.A., et al. The KRASG12C inhibitor MRTX849 Provides insight toward therapeutic susceptibility of KRAS-mutant cancers in mouse models and patients. Cancer Discov. 2020;10:54–71. doi: 10.1158/-19-1167.
    1. Amodio V., Yaeger R., Arcella P., Cancelliere C., Lamba S., Lorenzato A., Arena S., Montone M., Mussolin B., Bian Y., et al. EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer. Cancer Discov. 2020;10:1129–1139. doi: 10.1158/-20-0187.
    1. Yamamoto K., Venida A., Yano J., Biancur D.E., Kakiuchi M., Gupta S., Sohn A.S.W., Mukhopadhyay S., Lin E.Y., Parker S.J., et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100–105. doi: 10.1038/s41586-020-2229-5.
    1. Encorafenib, Binimetinib, and Nivolumab in Treating Patients with Microsatellite Stable BRAFV600E Metastatic Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Study of PI3Kinase Inhibition (Copanlisib) and Anti-PD-1 Antibody Nivolumab in Relapsed/Refractory Solid Tumors with Expansions in Mismatch-repair Proficient (MSS) Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Broz M.L., Binnewies M., Boldajipour B., Nelson A.E., Pollack J.L., Erle D.J., Barczak A., Rosenblum M.D., Daud A., Barber D.L., et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26:638–652. doi: 10.1016/j.ccell.2014.09.007.
    1. Smyth M.J., Ngiow S.F., Ribas A., Teng M.W.L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 2016;13:143–158. doi: 10.1038/nrclinonc.2015.209.
    1. Binnewies M., Roberts E.W., Kersten K., Chan V., Fearon D.F., Merad M., Coussens L.M., Gabrilovich D.I., Ostrand-Rosenberg S., Hedrick C.C., et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24:541–550. doi: 10.1038/s41591-018-0014-x.
    1. Wang Y.-J., Fletcher R., Yu J., Zhang L. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5:194–203. doi: 10.1016/j.gendis.2018.05.003.
    1. Apetoh L., Ghiringhelli F., Tesniere A., Obeid M., Ortiz C., Criollo A., Mignot G., Maiuri M.C., Ullrich E., Saulnier P., et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 2007;13:1050–1059. doi: 10.1038/nm1622.
    1. Pfirschke C., Engblom C., Rickelt S., Cortez-Retamozo V., Garris C., Pucci F., Yamazaki T., Poirier-Colame V., Newton A., Redouane Y., et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44:343–354. doi: 10.1016/j.immuni.2015.11.024.
    1. Grimaldi A., Cammarata I., Martire C., Focaccetti C., Piconese S., Buccilli M., Mancone C., Buzzacchino F., Berrios J.R.G., D’Alessandris N., et al. Combination of chemotherapy and PD-1 blockade induces T cell responses to tumor non-mutated neoantigens. Commun. Biol. 2020;3:1–13. doi: 10.1038/s42003-020-0811-x.
    1. Galluzzi L., Senovilla L., Zitvogel L., Kroemer G. The secret ally: Immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 2012;11:215–233. doi: 10.1038/nrd3626.
    1. Kanterman J., Sade-Feldman M., Biton M., Ish-Shalom E., Lasry A., Goldshtein A., Hubert A., Baniyash M. Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Res. 2014;74:6022–6035. doi: 10.1158/0008-5472.CAN-14-0657.
    1. Gonzalez-Aparicio M., Alzuguren P., Mauleon I., Medina-Echeverz J., Hervas-Stubbs S., Mancheno U., Berraondo P., Crettaz J., Gonzalez-Aseguinolaza G., Prieto J., et al. Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut. 2011;60:341–349. doi: 10.1136/gut.2010.211722.
    1. Galaine J., Turco C., Vauchy C., Royer B., Mercier-Letondal P., Queiroz L., Loyon R., Mouget V., Boidot R., Laheurte C., et al. CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int. J. Cancer. 2019;145:3112–3125. doi: 10.1002/ijc.32620.
    1. Dosset M., Vargas T.R., Lagrange A., Boidot R., Végran F., Roussey A., Chalmin F., Dondaine L., Paul C., Lauret Marie-Joseph E., et al. PD-1/PD-L1 pathway: An adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology. 2018;7:e1433981. doi: 10.1080/2162402X.2018.1433981.
    1. Gabrilovich D.I., Chen H.L., Girgis K.R., Cunningham H.T., Meny G.M., Nadaf S., Kavanaugh D., Carbone D.P. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 1996;2:1096–1103. doi: 10.1038/nm1096-1096.
    1. Osada T., Chong G., Tansik R., Hong T., Spector N., Kumar R., Hurwitz H.I., Dev I., Nixon A.B., Lyerly H.K., et al. The Effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 2008;57:1115–1124. doi: 10.1007/s00262-007-0441-x.
    1. Gavalas N.G., Tsiatas M., Tsitsilonis O., Politi E., Ioannou K., Ziogas A.C., Rodolakis A., Vlahos G., Thomakos N., Haidopoulos D., et al. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br. J. Cancer. 2012;107:1869–1875. doi: 10.1038/bjc.2012.468.
    1. Terme M., Pernot S., Marcheteau E., Sandoval F., Benhamouda N., Colussi O., Dubreuil O., Carpentier A.F., Tartour E., Taieb J. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013;73:539–549. doi: 10.1158/0008-5472.CAN-12-2325.
    1. Elamin Y.Y., Rafee S., Toomey S., Hennessy B.T. Immune effects of bevacizumab: Killing two birds with one stone. Cancer Microenviron. 2015;8:15–21. doi: 10.1007/s12307-014-0160-8.
    1. Loupakis F., Cremolini C., Masi G., Lonardi S., Zagonel V., Salvatore L., Cortesi E., Tomasello G., Ronzoni M., Spadi R., et al. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med. 2014;371:1609–1618. doi: 10.1056/NEJMoa1403108.
    1. Moretto R., Corallo S., Belfiore A., Rossini D., Boccaccino A., Lonardi S., Centonze G., Morano F., Germani M.M., Loupakis F., et al. Prognostic impact of immune-microenvironment in colorectal liver metastases resected after triplets plus a biologic agent: A pooled analysis of five prospective trials. Eur. J. Cancer. 2020;135:78–88. doi: 10.1016/j.ejca.2020.04.045.
    1. Cremolini C., Antoniotti C., Rossini D., Lonardi S., Loupakis F., Pietrantonio F., Bordonaro R., Latiano T.P., Tamburini E., Santini D., et al. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol. 2020;21:497–507. doi: 10.1016/S1470-2045(19)30862-9.
    1. Van Cutsem E., Cervantes A., Adam R., Sobrero A., Van Krieken J.H., Aderka D., Aranda Aguilar E., Bardelli A., Benson A., Bodoky G., et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016;27:1386–1422. doi: 10.1093/annonc/mdw235.
    1. National Comprehensive Cancer Network Colon Cancer (Version 4.2020) [(accessed on 17 July 2020)]; Available online: .
    1. Wang L., Wei Y., Fang W., Lu C., Chen J., Cui G., Diao H. Cetuximab enhanced the cytotoxic activity of immune cells during treatment of colorectal cancer. CPB. 2017;44:1038–1050. doi: 10.1159/000485404.
    1. Kimura H., Sakai K., Arao T., Shimoyama T., Tamura T., Nishio K. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci. 2007;98:1275–1280. doi: 10.1111/j.1349-7006.2007.00510.x.
    1. Trotta A.M., Ottaiano A., Romano C., Nasti G., Nappi A., De Divitiis C., Napolitano M., Zanotta S., Casaretti R., D’Alterio C., et al. Prospective evaluation of cetuximab-mediated antibody-dependent cell cytotoxicity in metastatic colorectal cancer patients predicts treatment efficacy. Cancer Immunol. Res. 2016;4:366–374. doi: 10.1158/2326-6066.CIR-15-0184.
    1. Trivedi S., Srivastava R.M., Concha-Benavente F., Ferrone S., Garcia-Bates T.M., Li J., Ferris R.L. Anti-EGFR targeted monoclonal antibody isotype influences anti-tumor cellular immunity in head and neck cancer patients. Clin. Cancer Res. 2016;22:5229–5237. doi: 10.1158/1078-0432.CCR-15-2971.
    1. Laurent-Puig P., Pekin D., Normand C., Kotsopoulos S.K., Nizard P., Perez-Toralla K., Rowell R., Olson J., Srinivasan P., Le Corre D., et al. Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy. Clin. Cancer Res. 2015;21:1087–1097. doi: 10.1158/1078-0432.CCR-14-0983.
    1. Tougeron D., Lecomte T., Pagès J.C., Villalva C., Collin C., Ferru A., Tourani J.M., Silvain C., Levillain P., Karayan-Tapon L. Effect of low-frequency KRAS mutations on the response to anti-EGFR therapy in metastatic colorectal cancer. Ann. Oncol. 2013;24:1267–1273. doi: 10.1093/annonc/mds620.
    1. Modest D.P., Martens U.M., Riera-Knorrenschild J., Greeve J., Florschütz A., Wessendorf S., Ettrich T., Kanzler S., Nörenberg D., Ricke J., et al. FOLFOXIRI plus panitumumab as first-line treatment of RAS wild-type metastatic colorectal cancer: The randomized, open-label, phase II VOLFI study (AIO KRK0109) J. Clin. Oncol. 2019;37:3401–3411. doi: 10.1200/JCO.19.01340.
    1. PhII Trial Panitumumab, Nivolumab, Ipilimumab in Kras/Nras/BRAF Wild-Type MSS Refractory mCRC. [(accessed on 17 July 2020)]; Available online: .
    1. Cremolini C., Rossini D., Dell’Aquila E., Lonardi S., Conca E., Del Re M., Busico A., Pietrantonio F., Danesi R., Aprile G., et al. Rechallenge for patients with RAS and BRAF Wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan: A phase 2 single-arm clinical trial. JAMA Oncol. 2019;5:343–350. doi: 10.1001/jamaoncol.2018.5080.
    1. Osawa H., Shinozaki E., Nakamura M., Ohhara Y., Shindo Y., Shiozawa M., Uetake H., Matsumoto H., Ureshino N., Satake H., et al. 481PPhase II study of cetuximab rechallenge in patients with ras wild-type metastatic colorectal cancer: E-rechallenge trial; Proceedings of the ESMO Congress 2018; Munich, Germany. 19–23 October 2018.
    1. Germano G., Lamba S., Rospo G., Barault L., Magrì A., Maione F., Russo M., Crisafulli G., Bartolini A., Lerda G., et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 2017;552:116–120. doi: 10.1038/nature24673.
    1. Newlands E.S., Stevens M.F., Wedge S.R., Wheelhouse R.T., Brock C. Temozolomide: A review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat. Rev. 1997;23:35–61. doi: 10.1016/S0305-7372(97)90019-0.
    1. Esteller M., Herman J.G. Generating mutations but providing chemosensitivity: The role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene. 2004;23:1–8. doi: 10.1038/sj.onc.1207316.
    1. Esteller M., Sanchez-Cespedes M., Rosell R., Sidransky D., Baylin S.B., Herman J.G. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 1999;59:67–70.
    1. Stupp R., Mason W.P., van den Bent M.J., Weller M., Fisher B., Taphoorn M.J.B., Belanger K., Brandes A.A., Marosi C., Bogdahn U., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330.
    1. Hegi M.E., Diserens A.-C., Gorlia T., Hamou M.-F., de Tribolet N., Weller M., Kros J.M., Hainfellner J.A., Mason W., Mariani L., et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005;352:997–1003. doi: 10.1056/NEJMoa043331.
    1. Stupp R., Hegi M.E., Mason W.P., van den Bent M.J., Taphoorn M.J.B., Janzer R.C., Ludwin S.K., Allgeier A., Fisher B., Belanger K., et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–466. doi: 10.1016/S1470-2045(09)70025-7.
    1. Dunn J., Baborie A., Alam F., Joyce K., Moxham M., Sibson R., Crooks D., Husband D., Shenoy A., Brodbelt A., et al. Extent of MGMT promoter methylation correlates with outcome in glioblastomas given temozolomide and radiotherapy. Br. J. Cancer. 2009;101:124–131. doi: 10.1038/sj.bjc.6605127.
    1. Pietrantonio F., Lobefaro R., Antista M., Lonardi S., Raimondi A., Morano F., Mosconi S., Rimassa L., Murgioni S., Sartore-Bianchi A., et al. Capecitabine and temozolomide versus FOLFIRI in RAS-mutated, MGMT-methylated metastatic colorectal cancer. Clin. Cancer Res. 2020;26:1017–1024. doi: 10.1158/1078-0432.CCR-19-3024.
    1. Calegari M.A., Inno A., Monterisi S., Orlandi A., Santini D., Basso M., Cassano A., Martini M., Cenci T., de Pascalis I., et al. A phase 2 study of temozolomide in pretreated metastatic colorectal cancer with MGMT promoter methylation. Br. J. Cancer. 2017;116:1279–1286. doi: 10.1038/bjc.2017.109.
    1. Hochhauser D., Glynne-Jones R., Potter V., Grávalos C., Doyle T.J., Pathiraja K., Zhang Q., Zhang L., Sausville E.A. A phase II study of temozolomide in patients with advanced aerodigestive tract and colorectal cancers and methylation of the O6-methylguanine-DNA methyltransferase promoter. Mol. Cancer Ther. 2013;12:809–818. doi: 10.1158/1535-7163.MCT-12-0710.
    1. Amatu A., Barault L., Moutinho C., Cassingena A., Bencardino K., Ghezzi S., Palmeri L., Bonazzina E., Tosi F., Ricotta R., et al. Tumor MGMT promoter hypermethylation changes over time limit temozolomide efficacy in a phase II trial for metastatic colorectal cancer. Ann. Oncol. 2016;27:1062–1067. doi: 10.1093/annonc/mdw071.
    1. Barault L., Amatu A., Bleeker F.E., Moutinho C., Falcomatà C., Fiano V., Cassingena A., Siravegna G., Milione M., Cassoni P., et al. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer. Ann. Oncol. 2015;26:1994–1999. doi: 10.1093/annonc/mdv272.
    1. Sartore-Bianchi A., Pietrantonio F., Amatu A., Milione M., Cassingena A., Ghezzi S., Caporale M., Berenato R., Falcomatà C., Pellegrinelli A., et al. Digital PCR assessment of MGMT promoter methylation coupled with reduced protein expression optimises prediction of response to alkylating agents in metastatic colorectal cancer patients. Eur. J. Cancer. 2017;71:43–50. doi: 10.1016/j.ejca.2016.10.032.
    1. Hunter C., Smith R., Cahill D.P., Stephens P., Stevens C., Teague J., Greenman C., Edkins S., Bignell G., Davies H., et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 2006;66:3987–3991. doi: 10.1158/0008-5472.CAN-06-0127.
    1. Yip S., Miao J., Cahill D.P., Iafrate A.J., Aldape K., Nutt C.L., Louis D.N. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin. Cancer Res. 2009;15:4622–4629. doi: 10.1158/1078-0432.CCR-08-3012.
    1. Hervieu A., Rébé C., Végran F., Chalmin F., Bruchard M., Vabres P., Apetoh L., Ghiringhelli F., Mignot G. Dacarbazine-mediated upregulation of NKG2D ligands on tumor cells activates NK and CD8 T cells and restrains melanoma growth. J. Investig. Dermatol. 2013;133:499–508. doi: 10.1038/jid.2012.273.
    1. Vikas P., Borcherding N., Chennamadhavuni A., Garje R. Therapeutic potential of combining PARP inhibitor and immunotherapy in solid tumors. Front. Oncol. 2020;10:570. doi: 10.3389/fonc.2020.00570.
    1. Mauri G., Arena S., Siena S., Bardelli A., Sartore-Bianchi A. The DNA damage response pathway as a land of therapeutic opportunities for colorectal cancer. Ann. Oncol. 2020 doi: 10.1016/j.annonc.2020.05.027.
    1. Basket Combination Study of Inhibitors of DNA Damage Response, Angiogenesis and Programmed Death Ligand 1 in Patients with Advanced Solid Tumors. [(accessed on 12 August 2020)]; Available online: .
    1. Lo Russo G., Moro M., Sommariva M., Cancila V., Boeri M., Centonze G., Ferro S., Ganzinelli M., Gasparini P., Huber V., et al. Antibody-Fc/FcR interaction on macrophages as a Mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/PD-L1 blockade. Clin. Cancer Res. 2019;25:989–999. doi: 10.1158/1078-0432.CCR-18-1390.
    1. Arwert E.N., Harney A.S., Entenberg D., Wang Y., Sahai E., Pollard J.W., Condeelis J.S. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 2018;23:1239–1248. doi: 10.1016/j.celrep.2018.04.007.
    1. Togashi Y., Shitara K., Nishikawa H. Regulatory T cells in cancer immunosuppression—Implications for anticancer therapy. Nat. Rev. Clin. Oncol. 2019;16:356–371. doi: 10.1038/s41571-019-0175-7.
    1. Pollard J.W. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer. 2004;4:71–78. doi: 10.1038/nrc1256.
    1. Dunn G.P., Old L.J., Schreiber R.D. The three Es of cancer immunoediting. Ann. Rev. Immunol. 2004;22:329–360. doi: 10.1146/annurev.immunol.22.012703.104803.
    1. Gajewski T.F., Schreiber H., Fu Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013;14:1014–1022. doi: 10.1038/ni.2703.
    1. Mantovani A., Marchesi F., Malesci A., Laghi L., Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017;14:399–416. doi: 10.1038/nrclinonc.2016.217.
    1. Noy R., Pollard J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity. 2014;41:49–61. doi: 10.1016/j.immuni.2014.06.010.
    1. Abou-Elkacem L., Arns S., Brix G., Gremse F., Zopf D., Kiessling F., Lederle W. Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol. Cancer Ther. 2013;12:1322–1331. doi: 10.1158/1535-7163.MCT-12-1162.
    1. Chen C.-W., Ou D.-L., Hsu C.-L., Lin L., Cheng A.-L., Hsu C. FRI-471-Regorafenib may enhance efficacy of anti-program cell death-1 therapy in hepatocellular carcinoma through modulation of macrophage polarization. J. Hepatol. 2019;70:e605–e606. doi: 10.1016/S0618-8278(19)31207-1.
    1. Wu R.-Y., Kong P.-F., Xia L.-P., Huang Y., Li Z.-L., Tang Y.-Y., Chen Y.-H., Li X., Senthilkumar R., Zhang H.-L., et al. Regorafenib promotes antitumor immunity via inhibiting PD-L1 and IDO1 expression in melanoma. Clin. Cancer Res. 2019;25:4530–4541. doi: 10.1158/1078-0432.CCR-18-2840.
    1. Hoff S., Grünewald S., Röse L., Zopf D. Immunomodulation by regorafenib alone and in combination with anti PD1 antibody on murine models of colorectal cancer. Ann. Oncol. 2017;28:v423. doi: 10.1093/annonc/mdx376.060.
    1. Wang C., Chevalier D., Saluja J., Sandhu J., Lau C., Fakih M. Regorafenib and nivolumab or pembrolizumab combination and circulating tumor dna response assessment in refractory microsatellite stable colorectal cancer. Oncologist. 2020;25:e1188–e1194. doi: 10.1634/theoncologist.2020-0161.
    1. Lin S.J., Gagnon-Bartsch J.A., Tan I.B., Earle S., Ruff L., Pettinger K., Ylstra B., van Grieken N., Rha S.Y., Chung H.C., et al. Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas. Gut. 2015;64:1721–1731. doi: 10.1136/gutjnl-2014-308252.
    1. Bekaii-Saab T.S., Ou F.-S., Ahn D.H., Boland P.M., Ciombor K.K., Heying E.N., Dockter T.J., Jacobs N.L., Pasche B.C., Cleary J.M., et al. Regorafenib dose-optimisation in patients with refractory metastatic colorectal cancer (ReDOS): A randomised, multicentre, open-label, phase 2 study. Lancet Oncol. 2019;20:1070–1082. doi: 10.1016/S1470-2045(19)30272-4.
    1. Argiles G., Margalef N.M., Valladares-Ayerbes M., de Prado J.V., Grávalos C., Alfonso P.G., Santos C., Tobeña M., Sastre J., Benavides M., et al. Results of REARRANGE trial: A randomized phase 2 study comparing different dosing approaches for regorafenib (REG) during the first cycle of treatment in patients (pts) with metastatic colorectal cancer (mCRC) Ann. Oncol. 2019;30:iv135. doi: 10.1093/annonc/mdz154.025.
    1. Shoji H., Iwasa S., Kuchiba A., Ogawa G., Kawasaki M., Nakamura K., Mori M., Honma Y., Takashima A., Kato K. A phase II study of lenvatinib in patients with metastatic colorectal cancer refractory to standard chemotherapy: LEMON study (NCCH1503); Proceedings of the ASCO Annual Meeting 2019; Chicago, IL, USA. 31 May–4 June 2019.
    1. Weichselbaum R.R., Liang H., Deng L., Fu Y.-X. Radiotherapy and immunotherapy: A beneficial liaison? Nat. Rev. Clin. Oncol. 2017;14:365–379. doi: 10.1038/nrclinonc.2016.211.
    1. Pitroda S.P., Chmura S.J., Weichselbaum R.R. Integration of radiotherapy and immunotherapy for treatment of oligometastases. Lancet Oncol. 2019;20:e434–e442. doi: 10.1016/S1470-2045(19)30157-3.
    1. Twyman-Saint Victor C., Rech A.J., Maity A., Rengan R., Pauken K.E., Stelekati E., Benci J.L., Xu B., Dada H., Odorizzi P.M., et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–377. doi: 10.1038/nature14292.
    1. Antonia S.J., Villegas A., Daniel D., Vicente D., Murakami S., Hui R., Kurata T., Chiappori A., Lee K.H., de Wit M., et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 2018;379:2342–2350. doi: 10.1056/NEJMoa1809697.
    1. Reits E.A., Hodge J.W., Herberts C.A., Groothuis T.A., Chakraborty M., Wansley E.K., Camphausen K., Luiten R.M., de Ru A.H., Neijssen J., et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 2006;203:1259–1271. doi: 10.1084/jem.20052494.
    1. Liang H., Deng L., Chmura S., Burnette B., Liadis N., Darga T., Beckett M.A., Lingen M.W., Witt M., Weichselbaum R.R., et al. Radiation-induced equilibrium is a balance between tumor cell proliferation and T cell-mediated killing. J. Immunol. 2013;190:5874–5881. doi: 10.4049/jimmunol.1202612.
    1. Lugade A.A., Moran J.P., Gerber S.A., Rose R.C., Frelinger J.G., Lord E.M. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 2005;174:7516–7523. doi: 10.4049/jimmunol.174.12.7516.
    1. Rodríguez-Ruiz M.E., Rodríguez I., Mayorga L., Labiano T., Barbes B., Etxeberria I., Ponz-Sarvise M., Azpilikueta A., Bolaños E., Sanmamed M.F., et al. TGFβ blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol. Cancer Ther. 2019;18:621–631. doi: 10.1158/1535-7163.MCT-18-0558.
    1. Harding S.M., Benci J.L., Irianto J., Discher D.E., Minn A.J., Greenberg R.A. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–470. doi: 10.1038/nature23470.
    1. Chakraborty M., Abrams S.I., Coleman C.N., Camphausen K., Schlom J., Hodge J.W. External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res. 2004;64:4328–4337. doi: 10.1158/0008-5472.CAN-04-0073.
    1. Lim Y.J., Koh J., Kim S., Jeon S.-R., Chie E.K., Kim K., Kang G.H., Han S.-W., Kim T.-Y., Jeong S.-Y., et al. Chemoradiation-induced alteration of programmed death-ligand 1 and CD8+ tumor-infiltrating lymphocytes identified patients with poor prognosis in rectal cancer: A matched comparison analysis. Int. J. Radiat. Oncol. Biol. Phys. 2017;99:1216–1224. doi: 10.1016/j.ijrobp.2017.07.004.
    1. Meillan N., Vernerey D., Lefèvre J.H., Manceau G., Svrcek M., Augustin J., Fléjou J.-F., Lascols O., Simon J.-M., Cohen R., et al. Mismatch repair system deficiency is associated with response to neoadjuvant chemoradiation in locally advanced rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019;105:824–833. doi: 10.1016/j.ijrobp.2019.07.057.
    1. Grapin M., Richard C., Limagne E., Boidot R., Morgand V., Bertaut A., Derangere V., Laurent P.-A., Thibaudin M., Fumet J.D., et al. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: A promising new combination. J. Immunother. Cancer. 2019;7:160. doi: 10.1186/s40425-019-0634-9.
    1. Frey B., Rückert M., Weber J., Mayr X., Derer A., Lotter M., Bert C., Rödel F., Fietkau R., Gaipl U.S. Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front. Immunol. 2017;8:231. doi: 10.3389/fimmu.2017.00231.
    1. Diamond J.M., Vanpouille-Box C., Spada S., Rudqvist N.-P., Chapman J.R., Ueberheide B.M., Pilones K.A., Sarfraz Y., Formenti S.C., Demaria S. Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol. Res. 2018;6:910–920. doi: 10.1158/2326-6066.CIR-17-0581.
    1. Vanpouille-Box C., Alard A., Aryankalayil M.J., Sarfraz Y., Diamond J.M., Schneider R.J., Inghirami G., Coleman C.N., Formenti S.C., Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017;8:15618. doi: 10.1038/ncomms15618.
    1. Ngwa W., Irabor O.C., Schoenfeld J.D., Hesser J., Demaria S., Formenti S.C. Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer. 2018;18:313–322. doi: 10.1038/nrc.2018.6.
    1. Glynne-Jones R., Wyrwicz L., Tiret E., Brown G., Rödel C., Cervantes A., Arnold D. ESMO guidelines committee rectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017;28:iv22–iv40. doi: 10.1093/annonc/mdx224.
    1. National Comprehensive Cancer Network Rectal Cancer (Version 6.2020) [(accessed on 17 July 2020)]; Available online: .
    1. Azria D., Doyen J., Jarlier M., Martel-Lafay I., Hennequin C., Etienne P., Vendrely V., François E., de La Roche G., Bouché O., et al. Late toxicities and clinical outcome at 5 years of the ACCORD 12/0405-PRODIGE 02 trial comparing two neoadjuvant chemoradiotherapy regimens for intermediate-risk rectal cancer. Ann. Oncol. 2017;28:2436–2442. doi: 10.1093/annonc/mdx351.
    1. Hong Y.S., Kim S.Y., Lee J.S., Nam B.-H., Kim K.-P., Kim J.E., Park Y.S., Park J.O., Baek J.Y., Kim T.-Y., et al. Oxaliplatin-based adjuvant chemotherapy for rectal cancer after preoperative chemoradiotherapy (ADORE): Long-term results of a randomized controlled trial. J. Clin. Oncol. 2019;37:3111–3123. doi: 10.1200/JCO.19.00016.
    1. Hospers G., Bahadoer R.R., Dijkstra E.A., van Etten B., Marijnen C., Putter H., Meershoek-Klein Kranenbarg E., Roodvoets A.G., Nagtegaal I.D., Beets-Tan R.G., et al. Short-course radiotherapy followed by chemotherapy before TME in locally advanced rectal cancer: The randomized RAPIDO trial; Proceedings of the ASCO Annual Meeting 2020, Virtual Scientific Program; Chicago, IL, USA. 29–31 May 2020.
    1. Conroy T., Lamfichekh N., Etienne P.-L., Rio E., Francois E., Mesgouez-Nebout N., Vendrely V., Artignan X., Bouché O., Gargot D., et al. Total neoadjuvant therapy with mFOLFIRINOX versus preoperative chemoradiation in patients with locally advanced rectal cancer: Final results of PRODIGE 23 phase III trial, a UNICANCER GI trial; Proceedings of the ASCO Annual Meeting 2020, Virtual Scientific Program; Chicago, IL, USA. 29–31 May 2020.
    1. Abuodeh Y., Venkat P., Kim S. Systematic review of case reports on the abscopal effect. Curr. Probl. Cancer. 2016;40:25–37. doi: 10.1016/j.currproblcancer.2015.10.001.
    1. Deng L., Liang H., Burnette B., Beckett M., Darga T., Weichselbaum R.R., Fu Y.-X. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Investig. 2014;124:687–695. doi: 10.1172/JCI67313.
    1. Rodriguez-Ruiz M.E., Rodriguez I., Barbes B., Mayorga L., Sanchez-Paulete A.R., Ponz-Sarvise M., Pérez-Gracia J.L., Melero I. Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy. 2017;16:1246–1251. doi: 10.1016/j.brachy.2017.06.012.
    1. Young K.H., Baird J.R., Savage T., Cottam B., Friedman D., Bambina S., Messenheimer D.J., Fox B., Newell P., Bahjat K.S., et al. Optimizing timing of immunotherapy improves control of tumors by hypofractionated radiation therapy. PLoS ONE. 2016;11:e0157164. doi: 10.1371/journal.pone.0157164.
    1. Fang J.Y., Richardson B.C. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6:322–327. doi: 10.1016/S1470-2045(05)70168-6.
    1. Dhillon A.S., Hagan S., Rath O., Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26:3279–3290. doi: 10.1038/sj.onc.1210421.
    1. Van Cutsem E., Köhne C.-H., Hitre E., Zaluski J., Chang Chien C.-R., Makhson A., D’Haens G., Pintér T., Lim R., Bodoky G., et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 2009;360:1408–1417. doi: 10.1056/NEJMoa0805019.
    1. Douillard J.-Y., Oliner K.S., Siena S., Tabernero J., Burkes R., Barugel M., Humblet Y., Bodoky G., Cunningham D., Jassem J., et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 2013;369:1023–1034. doi: 10.1056/NEJMoa1305275.
    1. Maughan T.S., Adams R.A., Smith C.G., Meade A.M., Seymour M.T., Wilson R.H., Idziaszczyk S., Harris R., Fisher D., Kenny S.L., et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: Results of the randomised phase 3 MRC COIN trial. Lancet. 2011;377:2103–2114. doi: 10.1016/S0140-6736(11)60613-2.
    1. Heinemann V., von Weikersthal L.F., Decker T., Kiani A., Vehling-Kaiser U., Al-Batran S.-E., Heintges T., Lerchenmüller C., Kahl C., Seipelt G., et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–1075. doi: 10.1016/S1470-2045(14)70330-4.
    1. Blaj C., Schmidt E.M., Lamprecht S., Hermeking H., Jung A., Kirchner T., Horst D. Oncogenic effects of high MAPK activity in colorectal cancer mark progenitor cells and persist irrespective of RAS mutations. Cancer Res. 2017;77:1763–1774. doi: 10.1158/0008-5472.CAN-16-2821.
    1. Lal N., White B.S., Goussous G., Pickles O., Mason M.J., Beggs A.D., Taniere P., Willcox B.E., Guinney J., Middleton G.W. KRAS mutation and consensus molecular subtypes 2 and 3 are independently associated with reduced immune infiltration and reactivity in colorectal cancer. Clin. Cancer Res. 2018;24:224–233. doi: 10.1158/1078-0432.CCR-17-1090.
    1. Liao W., Overman M.J., Boutin A.T., Shang X., Zhao D., Dey P., Li J., Wang G., Lan Z., Li J., et al. KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 2019;35:559–572.e7. doi: 10.1016/j.ccell.2019.02.008.
    1. Canon J., Rex K., Saiki A.Y., Mohr C., Cooke K., Bagal D., Gaida K., Holt T., Knutson C.G., Koppada N., et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217–223. doi: 10.1038/s41586-019-1694-1.
    1. D’Souza W.N., Chang C.-F., Fischer A.M., Li M., Hedrick S.M. The Erk2 MAPK regulates CD8 T cell proliferation and survival. J. Immunol. 2008;181:7617–7629. doi: 10.4049/jimmunol.181.11.7617.
    1. Hu-Lieskovan S., Mok S., Homet Moreno B., Tsoi J., Robert L., Goedert L., Pinheiro E.M., Koya R.C., Graeber T.G., Comin-Anduix B., et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Sci. Transl. Med. 2015;7:279ra41. doi: 10.1126/scitranslmed.aaa4691.
    1. Vella L.J., Pasam A., Dimopoulos N., Andrews M., Knights A., Puaux A.-L., Louahed J., Chen W., Woods K., Cebon J.S. MEK inhibition, alone or in combination with BRAF inhibition, affects multiple functions of isolated normal human lymphocytes and dendritic cells. Cancer Immunol. Res. 2014;2:351–360. doi: 10.1158/2326-6066.CIR-13-0181.
    1. Ribas A., Lawrence D., Atkinson V., Agarwal S., Miller W.H., Carlino M.S., Fisher R., Long G.V., Hodi F.S., Tsoi J., et al. Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat. Med. 2019;25:936–940. doi: 10.1038/s41591-019-0476-5.
    1. Bar-Sagi D., Knelson E.H., Sequist L.V. A bright future for KRAS inhibitors. Nat. Cancer. 2020;1:25–27. doi: 10.1038/s43018-019-0016-8.
    1. CodeBreak 100: Activity of AMG 510, a novel small molecule inhibitor of KRASG12C, in patients with advanced colorectal cancer; Proceedings of the ASCO Annual Meeting 2020, Virtual Scientific Program; Chicago, IL, USA. 29–31 May 2020.
    1. AMG 510 (pINN) Sotorasib Activity in Subjects with Advanced Solid Tumors with KRAS p.G12C Mutation (CodeBreak 101) [(accessed on 17 July 2020)]; Available online: .
    1. Loupakis F., Ruzzo A., Cremolini C., Vincenzi B., Salvatore L., Santini D., Masi G., Stasi I., Canestrari E., Rulli E., et al. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br. J. Cancer. 2009;101:715–721. doi: 10.1038/sj.bjc.6605177.
    1. Samowitz W.S., Sweeney C., Herrick J., Albertsen H., Levin T.R., Murtaugh M.A., Wolff R.K., Slattery M.L. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65:6063–6069. doi: 10.1158/0008-5472.CAN-05-0404.
    1. Pietrantonio F., Petrelli F., Coinu A., Di Bartolomeo M., Borgonovo K., Maggi C., Cabiddu M., Iacovelli R., Bossi I., Lonati V., et al. Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: A meta-analysis. Eur. J. Cancer. 2015;51:587–594. doi: 10.1016/j.ejca.2015.01.054.
    1. Venderbosch S., Nagtegaal I.D., Maughan T.S., Smith C.G., Cheadle J.P., Fisher D., Kaplan R., Quirke P., Seymour M.T., Richman S.D., et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 2014;20:5322–5330. doi: 10.1158/1078-0432.CCR-14-0332.
    1. Cunningham J.M., Christensen E.R., Tester D.J., Kim C.Y., Roche P.C., Burgart L.J., Thibodeau S.N. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998;58:3455–3460.
    1. Weisenberger D.J., Siegmund K.D., Campan M., Young J., Long T.I., Faasse M.A., Kang G.H., Widschwendter M., Weener D., Buchanan D., et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006;38:787–793. doi: 10.1038/ng1834.
    1. Fang M., Hutchinson L., Deng A., Green M.R. Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma. Proc. Natl. Acad. Sci. USA. 2016;113:1250–1255. doi: 10.1073/pnas.1525619113.
    1. Overman M.J., McDermott R., Leach J.L., Lonardi S., Lenz H.-J., Morse M.A., Desai J., Hill A., Axelson M., Moss R.A., et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–1191. doi: 10.1016/S1470-2045(17)30422-9.
    1. Prahallad A., Sun C., Huang S., Di Nicolantonio F., Salazar R., Zecchin D., Beijersbergen R.L., Bardelli A., Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 2012;483:100–103. doi: 10.1038/nature10868.
    1. Kopetz S., Grothey A., Yaeger R., Van Cutsem E., Desai J., Yoshino T., Wasan H., Ciardiello F., Loupakis F., Hong Y.S., et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E–mutated colorectal cancer. N. Engl. J. Med. 2019;381:1632–1643. doi: 10.1056/NEJMoa1908075.
    1. FDA Approves Encorafenib in Combination with Cetuximab for Metastatic Colorectal Cancer with a BRAF V600E Mutation. [(accessed on 17 July 2020)]; Available online: .
    1. Koustas E., Papavassiliou A.G., Karamouzis M.V. The role of autophagy in the treatment of BRAF mutant colorectal carcinomas differs based on microsatellite instability status. PLoS ONE. 2018;13:e0207227. doi: 10.1371/journal.pone.0207227.
    1. Bryant K.L., Stalnecker C.A., Zeitouni D., Klomp J.E., Peng S., Tikunov A.P., Gunda V., Pierobon M., Waters A.M., George S.D., et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 2019;25:628–640. doi: 10.1038/s41591-019-0368-8.
    1. Kinsey C.G., Camolotto S.A., Boespflug A.M., Guillen K.P., Foth M., Truong A., Schuman S.S., Shea J.E., Seipp M.T., Yap J.T., et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 2019;25:620–627. doi: 10.1038/s41591-019-0367-9.
    1. Corcoran R. Clinical efficacy of combined BRAF, MEK, and PD-1 inhibition in BRAFV600E colorectal cancer patients; Proceedings of the ESMO World GI 2020—Virtual; Barcelona, Spain. 1–4 July 2020.
    1. Dabrafenib + Trametinib + PDR001 in Colorectal Cancer. [(accessed on 17 July 2020)]; Available online: .
    1. Wood L.D., Parsons D.W., Jones S., Lin J., Sjoblom T., Leary R.J., Shen D., Boca S.M., Barber T., Ptak J., et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–1113. doi: 10.1126/science.1145720.
    1. Fruman D.A., Chiu H., Hopkins B.D., Bagrodia S., Cantley L.C., Abraham R.T. The PI3K pathway in human disease. Cell. 2017;170:605–635. doi: 10.1016/j.cell.2017.07.029.
    1. Wang Q., Shi Y., Zhou K., Wang L., Yan Z., Liu Y., Xu L., Zhao S., Chu H., Shi T., et al. PIK3CA mutations confer resistance to first-line chemotherapy in colorectal cancer. Cell Death Dis. 2018;9:1–11. doi: 10.1038/s41419-018-0776-6.
    1. Xu J.-M., Wang Y., Wang Y.-L., Wang Y., Liu T., Ni M., Li M.-S., Lin L., Ge F.-J., Gong C., et al. PIK3CA mutations contribute to acquired cetuximab resistance in patients with metastatic colorectal cancer. Clin. Cancer Res. 2017;23:4602–4616. doi: 10.1158/1078-0432.CCR-16-2738.
    1. Price T.J., Bruhn M.A., Lee C.K., Hardingham J.E., Townsend A.R., Mann K.P., Simes J., Weickhardt A., Wrin J.W., Wilson K., et al. Correlation of extended RAS and PIK3CA gene mutation status with outcomes from the phase III AGITG MAX STUDY involving capecitabine alone or in combination with bevacizumab plus or minus mitomycin C in advanced colorectal cancer. Br. J. Cancer. 2015;112:963–970. doi: 10.1038/bjc.2015.37.
    1. Hanker A.B., Kaklamani V., Arteaga C.L. Challenges for the clinical development of PI3K inhibitors: Strategies to improve their impact in solid tumors. Cancer Discov. 2019;9:482–491. doi: 10.1158/-18-1175.
    1. Putz E.M., Prchal-Murphy M., Simma O.A., Forster F., Koenig X., Stockinger H., Piekorz R.P., Freissmuth M., Müller M., Sexl V., et al. PI3Kδ is essential for tumor clearance mediated by cytotoxic T lymphocytes. PLoS ONE. 2012;7:e40852. doi: 10.1371/journal.pone.0040852.
    1. Ali K., Soond D.R., Pineiro R., Hagemann T., Pearce W., Lim E.L., Bouabe H., Scudamore C.L., Hancox T., Maecker H., et al. Inactivation of the PI3K p110δ breaks regulatory T cell-mediated immune tolerance to cancer. Nature. 2014;510:407–411. doi: 10.1038/nature13444.
    1. Ahmad S., Abu-Eid R., Shrimali R., Webb M., Verma V., Doroodchi A., Berrong Z., Samara R., Rodriguez P.C., Mkrtichyan M., et al. Differential PI3Kδ signaling in CD4+ T-cell subsets enables selective targeting of T regulatory cells to enhance cancer immunotherapy. Cancer Res. 2017;77:1892–1904. doi: 10.1158/0008-5472.CAN-16-1839.
    1. Carnevalli L.S., Sinclair C., Taylor M.A., Gutierrez P.M., Langdon S., Coenen-Stass A.M.L., Mooney L., Hughes A., Jarvis L., Staniszewska A., et al. PI3Kα/δ inhibition promotes anti-tumor immunity through direct enhancement of effector CD8+ T-cell activity. J. Immunother. Cancer. 2018;6:158. doi: 10.1186/s40425-018-0457-0.
    1. Schmid M.C., Avraamides C.J., Dippold H.C., Franco I., Foubert P., Ellies L.G., Acevedo L.M., Manglicmot J.R.E., Song X., Wrasidlo W., et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell. 2011;19:715–727. doi: 10.1016/j.ccr.2011.04.016.

Source: PubMed

3
Subscribe