Optimizing high-flow nasal cannula flow settings in adult hypoxemic patients based on peak inspiratory flow during tidal breathing

Jie Li, J Brady Scott, James B Fink, Brooke Reed, Oriol Roca, Rajiv Dhand, Jie Li, J Brady Scott, James B Fink, Brooke Reed, Oriol Roca, Rajiv Dhand

Abstract

Background: Optimal flow settings during high-flow nasal cannula (HFNC) therapy are unknown. We investigated the optimal flow settings during HFNC therapy based on breathing pattern and tidal inspiratory flows in patients with acute hypoxemic respiratory failure (AHRF).

Methods: We conducted a prospective clinical study in adult hypoxemic patients treated by HFNC with a fraction of inspired oxygen (FIO2) ≥ 0.4. Patient's peak tidal inspiratory flow (PTIF) was measured and HFNC flows were set to match individual PTIF and then increased by 10 L/min every 5-10 min up to 60 L/min. FIO2 was titrated to maintain pulse oximetry (SpO2) of 90-97%. SpO2/FIO2, respiratory rate (RR), ROX index [(SpO2/FIO2)/RR], and patient comfort were recorded after 5-10 min on each setting. We also conducted an in vitro study to explore the relationship between the HFNC flows and the tracheal FIO2, peak inspiratory and expiratory pressures.

Results: Forty-nine patients aged 58.0 (SD 14.1) years were enrolled. At enrollment, HFNC flow was set at 45 (38, 50) L/min, with an FIO2 at 0.62 (0.16) to obtain an SpO2/FIO2 of 160 (40). Mean PTIF was 34 (9) L/min. An increase in HFNC flows up to two times of the individual patient's PTIF, incrementally improved oxygenation but the ROX index plateaued with HFNC flows of 1.34-1.67 times the individual PTIF. In the in vitro study, when the HFNC flow was set higher than PTIF, tracheal peak inspiratory and expiratory pressures increased as HFNC flow increased but the FIO2 did not change.

Conclusion: Mean PTIF values in most patients with AHRF were between 30 and 40 L/min. We observed improvement in oxygenation with HFNC flows set above patient PTIF. Thus, a pragmatic approach to set optimal flows in patients with AHRF would be to initiate HFNC flow at 40 L/min and titrate the flow based on improvement in ROX index and patient tolerance.

Trial registration: ClinicalTrials.gov (NCT03738345). Registered on November 13th, 2018. https://ichgcp.net/clinical-trials-registry/NCT03738345?term=NCT03738345&draw=2&rank=1.

Keywords: Flow setting; High-flow nasal cannula; Hypoxemia; Peak inspiratory flow.

Conflict of interest statement

Dr. Li declares to receive research funding from Fisher & Paykel Healthcare Ltd, Aerogen Ltd, and Rice Foundation and lecture honorarium from American Association for Respiratory Care, Aerogen Ltd, Heyer Ltd, and Fisher & Paykel Healthcare Ltd outside the submitted work. Dr. Li is the section editor for respiratory care journal. Dr. Scott declares to receive research funding from Teleflex. Dr. Fink is Chief Science Officer for Aerogen Pharma Corp. Dr. Dhand reports remuneration from GSK Pharmaceuticals, Boehringer-Ingelheim, Bayer, Mylan, Teva, and Astra-Zeneca Pharmaceuticals outside the submitted work. Dr. Roca discloses a research grant from Hamilton Medical and speaker fees from Hamilton Medical, Ambu, Aerogen Ltd, and Fisher & Paykel, and non-financial research support from Timpel and Masimo Corporation. None of the companies/institutions had a role in the study design, data collection, analysis, preparation of the manuscript, or the decision to publish the findings. Ms. Reed has no conflicts to disclose.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
The correlation between SpO2/FIO2 ratio and flow ratio. The flow ratio of setting HFNC flow to the patient’s peak tidal inspiratory flow is shown on the X-axis. The ratio of patients’ SpO2/FIO2 at one flow setting to SpO2/FIO2 achieved when HFNC flow was set to match patient’s peak inspiratory flow during tidal breathing (matching flow) is shown on the Y-axis. The scatterplot shows significant correlation between the two ratios. SpO2, pulse oximetry; FIO2, fraction of inspired oxygen; HFNC, high-flow nasal cannula.
Fig. 2
Fig. 2
Patient response to different flow ratios. On the top 2 figures, X-axis is the flow ratio of setting HFNC flow to patients’ peak inspiratory flow during tidal breathing and the flow ratios are divided into four groups (≤ 1, 1.01–1.33, 1.34–1.67, and ≥ 1.68). On the Y-axis, the ratio of patients’ SpO2/FIO2 (left top) or ROX (right top) at the flow setting to SpO2/FIO2 or ROX at their matching flow are shown. As the flow ratio increased, the SpO2/FIO2 ratio increased. Similarly, compared to ROX ratio with flow ratios ≤ 1.33, ROX ratio was higher with flow ratios ≥ 1.34–1.67 and 1.68, but ROX ratio did not increase beyond flow ratios of 1.34–1.67. RR ratio was lower with flow ratios of 1.34–1.67 than with flow ratios ≤ 1 (left bottom). No significant differences of comfort score ratios were found at different flow ratios (right bottom). *p < 0.05 compared to flow ratios ≤ 1. #p < 0.05 compared to flow ratios of 1.01–1.33. &p < 0.05 compared to flow ratios of 1.34–1.67. SpO2, pulse oximetry; FIO2, fraction of inspired oxygen; RR, respiratory rate; ROX = (SpO2/FIO2)/RR
Fig. 3
Fig. 3
The correlation between flow ratio and FIO2, peak inspiratory and expiratory pressure at trachea in the in vitro study. X-axis is the flow ratio of setting HFNC flow to peak tidal inspiratory flow, Y-axis is the trachea FIO2 (left), peak inspiratory (middle) and peak expiratory pressure (right). As the flow ratio increased, both peak inspiratory and expiratory pressure increased, while FIO2 stabilized when flow ratio was ≥ 1. FIO2, fraction of inspired oxygen

References

    1. Li J, Jing GQ, Scott JB. Year in review 2019: High-flow nasal cannula (HFNC) oxygen therapy for adult patients. Respir Care. 2020;65(4):545–557. doi: 10.4187/respcare.07663.
    1. Liu K, Jing G, Scott JB, Li J. Postoperative management of hypoxemia. Respir Care. 2021;66(7):1136–1149. doi: 10.4187/respcare.08929.
    1. Lewis SR, Baker PE, Parker R, Smith AF. High-flow nasal cannulae for respiratory support in adult intensive care patients. Cochrane Database Syst Rev. 2021;3(3):CD010172.
    1. Yasuda H, Okano H, Mayumi T, Narita C, Onodera Y, Nakane M, Shime N. Post-extubation oxygenation strategies in acute respiratory failure: a systematic review and network meta-analysis. Crit Care. 2021;25(1):135. doi: 10.1186/s13054-021-03550-4.
    1. Chaudhuri D, Granton D, Wang DX, Burns KEA, Helviz Y, Einav S, et al. High-flow nasal cannula in the immediate postoperative period: a systematic review and meta-analysis. Chest. 2020;158(5):1934–1946. doi: 10.1016/j.chest.2020.06.038.
    1. Rochwerg B, Einav S, Chaudhuri D, Mancebo J, Mauri T, Helviz Y, et al. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Med. 2020;46(12):2226–2237. doi: 10.1007/s00134-020-06312-y.
    1. Rochwerg B, Granton D, Wang DX, Helviz Y, Einav S, Frat JP, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019;45(5):563–572.
    1. Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372(23):2185–2196. doi: 10.1056/NEJMoa1503326.
    1. Okuda M, Tanaka N, Naito K, Kumada T, Fukuda K, Kato Y, et al. Evaluation by various methods of the physiological mechanism of a high-flow nasal cannula (HFNC) in healthy volunteers. BMJ Open Respir Res. 2017;4(1):e000200. doi: 10.1136/bmjresp-2017-000200.
    1. Mauri T, Alban L, Turrini C, Cambiaghi B, Carlesso E, Taccone P, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453–1463. doi: 10.1007/s00134-017-4890-1.
    1. Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, Pesenti A. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Delorme M, Bouchard PA, Simon M, Simard S, Lellouche F. Effects of high-flow nasal cannula on the work of breathing in patients recovering from acute respiratory failure. Crit Care Med. 2017;45(12):1981–1988. doi: 10.1097/CCM.0000000000002693.
    1. Basile MC, Mauri T, Spinelli E, Dalla Corte F, Montanari G, Marongiu I, et al. Nasal high flow higher than 60 L/min in patients with acute hypoxemic respiratory failure: a physiological study. Crit Care. 2020;24(1):654. doi: 10.1186/s13054-020-03344-0.
    1. Nielsen KR, Ellington LE, Gray AJ, Stanberry LI, Smith LS, DiBlasi RM. Effect of high-flow nasal cannula on expiratory pressure and ventilation in infant, pediatric, and adult models. Respir Care. 2018;63(2):147–157. doi: 10.4187/respcare.05728.
    1. Parke RL, Eccleston ML, McGuinness SP. The effects of flow on airway pressure during nasal high-flow oxygen therapy. Respir Care. 2011;56(8):1151–1155. doi: 10.4187/respcare.01106.
    1. Luo JC, Lu MS, Zhao ZH, Jiang W, Xu B, Weng L, et al. Positive end-expiratory pressure effect of 3 high-flow nasal cannula devices. Respir Care. 2017;62(7):888–895. doi: 10.4187/respcare.05337.
    1. Ritchie JE, Williams AB, Gerard C, Hockey H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. Anaesth Intensive Care. 2011;39(6):1103–1110. doi: 10.1177/0310057X1103900620.
    1. Chikata Y, Onodera M, Oto J, Nishimura M. FIO2 in an adult model simulating high-flow nasal cannula therapy. Respir Care. 2017;62(2):193–198. doi: 10.4187/respcare.04963.
    1. Chanques G, Riboulet F, Molinari N, Carr J, Jung B, Prades A, et al. Comparison of three high flow oxygen therapy delivery devices: a clinical physiological cross-over study. Minerva Anestesiol. 2013;79(12):1344–1355.
    1. Mauri T, Spinelli E, Dalla Corte F, Scotti E, Turrini C, Lazzeri M, et al. Noninvasive assessment of airflows by electrical impedance tomography in intubated hypoxemic patients: an exploratory study. Ann Intensive Care. 2019;9(1):83. doi: 10.1186/s13613-019-0560-5.
    1. Butt S, Pistidda L, Floris L, Liperi C, Vasques F, Glover G, et al. Initial setting of high-flow nasal oxygen post extubation based on mean inspiratory flow during a spontaneous breathing trial. J Crit Care. 2021;63:40–44. doi: 10.1016/j.jcrc.2020.12.022.
    1. Li J, Tu M, Yang L, Jing G, Fink JB, Burtin C, et al. Worldwide clinical practice of high-flow nasal cannula and concomitant aerosol therapy in critical care practice. Respir Care. 2021;66(9):1416–1424. doi: 10.4187/respcare.08996.
    1. Roca O, Caralt B, Messika J, Samper M, Sztrymf B, Hernández G, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368–1376. doi: 10.1164/rccm.201803-0589OC.
    1. Li J, Fink JB, MacLoughlin R, Dhand R. A narrative review on trans-nasal pulmonary aerosol delivery. Crit Care. 2020;24:506. doi: 10.1186/s13054-020-03206-9.
    1. Mauri T, Carlesso E, Spinelli E, Turrini C, Corte FD, Russo R, et al. Increasing support by nasal high flow acutely modifies the ROX index in hypoxemic patients: A physiologic study. J Crit Care. 2019;53:183–185. doi: 10.1016/j.jcrc.2019.06.020.
    1. Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol. 2019;85(9):1014–1023. doi: 10.23736/S0375-9393.19.13418-9.
    1. Chen W, Janz DR, Shaver CM, Bernard GR, Bastarache JA, Ware LB. Clinical characteristics and outcomes are similar in ARDS diagnosed by oxygen saturation/Fio2 ratio compared with Pao2/Fio2 ratio. Chest. 2015;148:1477–1483. doi: 10.1378/chest.15-0169.
    1. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB, et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132:410–417. doi: 10.1378/chest.07-0617.

Source: PubMed

3
Subscribe