Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

Mallappa Kumara Swamy, Mohd Sayeed Akhtar, Uma Rani Sinniah, Mallappa Kumara Swamy, Mohd Sayeed Akhtar, Uma Rani Sinniah

Abstract

A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.

Conflict of interest statement

The authors declare that there is no conflict of interests.

Figures

Figure 1
Figure 1
Structures of some important chemical compounds of essential oils.
Figure 2
Figure 2
Antimicrobial mechanisms of essential oils on microbes.

References

    1. Swamy M. K., Sinniah U. R. A comprehensive review on the phytochemical constituents and pharmacological activities of Pogostemon cablin Benth.: an aromatic medicinal plant of industrial importance. Molecules. 2015;20(5):8521–8547. doi: 10.3390/molecules20058521.
    1. Kumara Swamy M., Sudipta K. M., Lokesh P., et al. Phytochemical screening and in vitro antimicrobial activity of Bougainvillea spectabilis flower extracts. International Journal of Phytomedicine. 2012;4(3):375–379.
    1. Akhtar M. S., Degaga B., Azam T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review. Biological Sciences and Pharmaceutical Research. 2014;2(1):1–7.
    1. Arumugam G., Swamy M. K., Sinniah U. R. Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules. 2016;21(4):p. 369. doi: 10.3390/molecules21040369.
    1. Bhattacharya R., Reddy K. R. C., Mishra A. K. Export strategy of Ayurvedic products from India. International Journal of Ayurvedic Medicine. 2014;5(1):125–128.
    1. Swamy M. K., Sinniah U. R. Patchouli (Pogostemon cablin Benth.): botany, agrotechnology and biotechnological aspects. Industrial Crops and Products. 2016;87:161–176. doi: 10.1016/j.indcrop.2016.04.032.
    1. Degenhardt J., Köllner T. G., Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70(15-16):1621–1637. doi: 10.1016/j.phytochem.2009.07.030.
    1. Swamy M. K., Mohanty S. K., Sinniah U. R., Maniyam A. Evaluation of Patchouli (Pogostemon cablin Benth.) cultivars for growth, yield and quality parameters. Journal of Essential Oil Bearing Plants. 2015;18(4):826–832. doi: 10.1080/0972060x.2015.1029989.
    1. Ali B., Al-Wabel N. A., Shams S., Ahamad A., Khan S. A., Anwar F. Essential oils used in aromatherapy: a systemic review. Asian Pacific Journal of Tropical Biomedicine. 2015;5(8):601–611. doi: 10.1016/j.apjtb.2015.05.007.
    1. Duschatzky C. B., Possetto M. L., Talarico L. B., et al. Evaluation of chemical and antiviral properties of essential oils from South American plants. Antiviral Chemistry and Chemotherapy. 2005;16(4):247–251. doi: 10.1177/095632020501600404.
    1. Al-Mariri A., Safi M. In vitro antibacterial activity of several plant extracts and oils against some gram-negative bacteria. Iranian Journal of Medical Sciences. 2014;39(1):36–43.
    1. Hammer K. A., Carson C. F., Riley T. V. Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology. 1999;86(6):985–990. doi: 10.1046/j.1365-2672.1999.00780.x.
    1. Lang G., Buchbauer G. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour and Fragrance Journal. 2012;27(1):13–39. doi: 10.1002/ffj.2082.
    1. Koroch A., Juliani H. R., Zygadlo J. A. Bioactivity of essential oils and their components. In: Berger R. G., editor. Flavours and Fragrances Chemistry, Bioprocessing and Sustainability. Berlin, Germany: Springer; 2007. pp. 87–115.
    1. Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 2013;6(12):1451–1474. doi: 10.3390/ph6121451.
    1. Rudramurthy G. R., Swamy M. K., Sinniah U. R., Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016;21(7):p. 836. doi: 10.3390/molecules21070836.
    1. Mulyaningsih S., Sporer F., Zimmermann S., Reichling J., Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine. 2010;17(13):1061–1066. doi: 10.1016/j.phymed.2010.06.018.
    1. Skočibušić M., Bezić N., Dunkić V., Radonić A. Antibacterial activity of Achillea clavennae essential oil against respiratory tract pathogens. Fitoterapia. 2004;75(7-8):733–736. doi: 10.1016/j.fitote.2004.05.009.
    1. Zeedan G. S. G., Abdalhamed A. M., Ottai M. E., Abdelshafy S., Abdeen E. Antimicrobial, antiviral activity and GC-MS analysis of essential oil extracted from Achillea fragrantissima plant growing in Sinai Peninsula, Egypt. Journal of Microbiology and Biochemical Technology. 2014;8, article 006 doi: 10.4172/1948-5948.S8-006.
    1. Maggi F., Bramucci M., Cecchini C., et al. Composition and biological activity of essential oil of Achillea ligustica All. (Asteraceae) naturalized in central Italy: ideal candidate for anti-cariogenic formulations. Fitoterapia. 2009;80(6):313–319. doi: 10.1016/j.fitote.2009.04.004.
    1. Lopes-Lutz D., Alviano D. S., Alviano C. S., Kolodziejczyk P. P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry. 2008;69(8):1732–1738. doi: 10.1016/j.phytochem.2008.02.014.
    1. Teixeira B., Marques A., Ramos C., et al. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products. 2013;43(1):587–595. doi: 10.1016/j.indcrop.2012.07.069.
    1. Hood J. R., Wilkinson J. M., Cavanagh H. M. A. Evaluation of common antibacterial screening methods utilized in essential oil research. Journal of Essential Oil Research. 2003;15(6):428–433. doi: 10.1080/10412905.2003.9698631.
    1. Unlu M., Ergene E., Unlu G. V., Zeytinoglu H. S., Vural N. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae) Food and Chemical Toxicology. 2010;48(11):3274–3280. doi: 10.1016/j.fct.2010.09.001.
    1. Andrade B. F. M. T., Barbosa L. N., Probst I. S., Júnior A. F. Antimicrobial activity of essential oils. Journal of Essential Oil Research. 2014;26(1):34–40.
    1. Matasyoh J. C., Maiyo Z. C., Ngure R. M., Chepkorir R. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry. 2009;113(2):526–529. doi: 10.1016/j.foodchem.2008.07.097.
    1. Begnami A. F., Duarte M. C. T., Furletti V., Rehder V. L. G. Antimicrobial potential of Coriandrum sativum L. against different Candida species in vitro. Food Chemistry. 2010;118(1):74–77. doi: 10.1016/j.foodchem.2009.04.089.
    1. Bisht D. S., Menon K. R. K., Singhal M. K. Comparative antimicrobial activity of essential oils of Cuminum cyminum L. and Foeniculum vulgare Mill. seeds against Salmonella typhimurium and Escherichia coli . Journal of Essential Oil-Bearing Plants. 2014;17(4):617–622. doi: 10.1080/0972060x.2014.956675.
    1. Grohs B.-M., Kunz B. Use of spice mixtures for the stabilisation of fresh portioned pork. Food Control. 2000;11(6):433–436. doi: 10.1016/S0956-7135(00)00005-0.
    1. Ait-Ouazzou A., Lorán S., Arakrak A., et al. Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Research International. 2012;45(1):313–319. doi: 10.1016/j.foodres.2011.09.004.
    1. Yousefbeyk F., Gohari A. R., Sourmaghi M. H. S., et al. Chemical composition and antimicrobial activity of essential oils from different parts of Daucus littoralis Smith subsp. hyrcanicus Rech. f. Journal of Essential Oil-Bearing Plants. 2014;17(4):570–576. doi: 10.1080/0972060x.2014.901610.
    1. Saet B. L., Kwang H. C., Su N. K., et al. The antimicrobial activity of essential oil from Dracocephalum foetidum against pathogenic microorganisms. Journal of Microbiology. 2007;45(1):53–57.
    1. Dos Santos N. O., Mariane B., Lago J. H. G., et al. Assessing the chemical composition and antimicrobial activity of essential oils from Brazilian plants—Eremanthus erythropappus (Asteraceae), Plectrantuns barbatus, and P. amboinicus (Lamiaceae) Molecules. 2015;20(5):8440–8452. doi: 10.3390/molecules20058440.
    1. Chaieb K., Hajlaoui H., Zmantar T., et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research. 2007;21(6):501–506. doi: 10.1002/ptr.2124.
    1. Novy P., Davidova H., Serrano-Rojero C. S., Rondevaldova J., Pulkrabek J., Kokoska L. Composition and antimicrobial activity of Euphrasia rostkoviana hayne essential oil. Evidence-Based Complementary and Alternative Medicine. 2015;2015:5. doi: 10.1155/2015/734101.734101
    1. Ibrahim N. A., El-Sakhawy F. S., Mohammed M. M. D., Farid M. A., Abdel-Wahed N. A. M., Deabes D. A. H. Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. Journal of Applied Pharmaceutical Science. 2015;5(2):001–005. doi: 10.7324/japs.2015.50201.
    1. Flores C. R., Pennec A., Nugier-Chauvin C., Daniellou R., Herrera-Estrella L., Chauvin A.-L. Chemical composition and antibacterial activity of essential oils extracted from plants cultivated in Mexico. Journal of the Mexican Chemical Society. 2014;58(4):452–455.
    1. Khoury M., El Beyrouthy M., Ouaini N., Iriti M., Eparvier V., Stien D. Chemical composition and antimicrobial activity of the essential oil of Juniperus excelsa M. Bieb. growing wild in Lebanon. Chemistry and Biodiversity. 2014;11(5):825–830. doi: 10.1002/cbdv.201300354.
    1. Botelho M. A., Nogueira N. A. P., Bastos G. M., et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian Journal of Medical and Biological Research. 2007;40(3):349–356. doi: 10.1590/s0100-879x2007000300010.
    1. Soković M. D., Vukojević J., Marin P. D., Brkić D. D., Vajs V., Van Griensven L. J. L. D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14(1):238–249. doi: 10.3390/molecules14010238.
    1. Petretto G. L., Fancello F., Zara S., et al. Antimicrobial activity against beneficial microorganisms and chemical composition of essential oil of Mentha suaveolens ssp. insularis grown in Sardinia. Journal of Food Science. 2014;79(3):M369–M377. doi: 10.1111/1750-3841.12343.
    1. Hammer K. A., Carson C. F., Rileya T. V. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrobial Agents and Chemotherapy. 2012;56(2):909–915. doi: 10.1128/aac.05741-11.
    1. Carson C. F., Mee B. J., Riley T. V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrobial Agents and Chemotherapy. 2002;46(6):1914–1920. doi: 10.1128/aac.46.6.1914-1920.2002.
    1. Braca A., Siciliano T., D'Arrigo M., Germanò M. P. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia. 2008;79(2):123–125. doi: 10.1016/j.fitote.2007.11.002.
    1. Berka-Zougali B., Ferhat M.-A., Hassani A., Chemat F., Allaf K. S. Comparative study of essential oils extracted from Algerian Myrtus communis L. leaves using microwaves and hydrodistillation. International Journal of Molecular Sciences. 2012;13(4):4673–4695. doi: 10.3390/ijms13044673.
    1. Singh S., Das S. S., Singh G., Schuff C., De Lampasona M. P., Catalán C. A. N. Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.) BioMed Research International. 2014;2014:10. doi: 10.1155/2014/918209.918209
    1. Runyoro D., Ngassapa O., Vagionas K., Aligiannis N., Graikou K., Chinou I. Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chemistry. 2010;119(1):311–316. doi: 10.1016/j.foodchem.2009.06.028.
    1. Lawal O. A., Ogunwande I. A., Omikorede O. E., et al. Hemical composition and antimicrobial activity of essential oil of Ocimum kilimandscharicum (R. Br.) Guerke: a new chemotype. American Journal of Essential Oils and Natural Products. 2014;2(1):41–46.
    1. Nevas M., Korhonen A.-R., Lindström M., Turkki P., Korkeala H. Antibacterial efficiency of Finnish spice essential oils against pathogenic and spoilage bacteria. Journal of Food Protection. 2004;67(1):199–202.
    1. Peñalver P., Huerta B., Borge C., Astorga R., Romero R., Perea A. Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. APMIS. 2005;113(1):1–6. doi: 10.1111/j.1600-0463.2005.apm1130101.x.
    1. Santoyo S., Cavero S., Jaime L., Ibañez E., Señoráns F. J., Reglero G. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: determination of optimal extraction parameters. Journal of Food Protection. 2006;69(2):369–375.
    1. Bozin B., Mimica-Dukic N., Simin N., Anackov G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. Journal of Agricultural and Food Chemistry. 2006;54(5):1822–1828. doi: 10.1021/jf051922u.
    1. Amatiste S., Sagrafoli D., Giacinti G., et al. Antimicrobial activity of essential oils against Staphylococcus aureus in fresh sheep cheese. Italian Journal of Food Safety. 2014;3(3) doi: 10.4081/ijfs.2014.1696.
    1. Béjaoui A., Chaabane H., Jemli M., Boulila A., Boussaid M. Essential oil composition and antibacterial activity of Origanum vulgare subsp. glandulosum Desf. at different phenological stages. Journal of Medicinal Food. 2013;16(12):1115–1120. doi: 10.1089/jmf.2013.0079.
    1. Ultee A., Smid E. J. Influence of carvacrol on growth and toxin production by Bacillus cereus . International Journal of Food Microbiology. 2001;64(3):373–378. doi: 10.1016/s0168-1605(00)00480-3.
    1. Esen G., Azaz A. D., Kurkcuoglu M., Baser K. H. C., Tinmaz A. Essential oil and antimicrobial activity of wild and cultivated Origanum vulgare L. subsp. hirtum (Link) letswaart from the Marmara region, Turkey. Flavour and Fragrance Journal. 2007;22(5):371–376. doi: 10.1002/ffj.1808.
    1. Beatovic D., Krstic-Miloševic D., Trifunovic S., et al. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Records of Natural Products. 2015;9(1):62–75.
    1. Elgayyar M., Draughon F. A., Golden D. A., Mount J. R. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection. 2001;64(7):1019–1024.
    1. Crevelin E. J., Caixeta S. C., Dias H. J., et al. Antimicrobial activity of the essential oil of Plectranthus neochilus against cariogenic bacteria. Evidence-Based Complementary and Alternative Medicine. 2015;2015:6. doi: 10.1155/2015/102317.102317
    1. Yang X., Zhang X., Yang S.-P., Liu W.-Q. Evaluation of the antibacterial activity of patchouli oil. Iranian Journal of Pharmaceutical Research. 2013;12(3):307–316.
    1. Bilcu M., Grumezescu A. M., Oprea A. E., et al. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains. Molecules. 2014;19(11):17943–17956. doi: 10.3390/molecules191117943.
    1. Pullagummi C., Rao N. B., Singh B. C. S., et al. Comparitive studies on antibacterial activity of Patchouli [Pogostemon cablin (Blanco) Benth] and Geranium (Pelargonium graveolens) aromatic medicinal plants. African Journal of Biotechnology. 2014;13(23):2379–2384. doi: 10.5897/AJB12.1369.
    1. Yu X.-D., Xie J.-H., Wang Y.-H., et al. Selective antibacterial activity of patchouli alcohol against Helicobacter pylori based on inhibition of urease. Phytotherapy Research. 2015;29(1):67–72. doi: 10.1002/ptr.5227.
    1. Karimi A. Characterization and antimicrobial activity of patchouli essential oil extracted from Pogostemon cablin [Blanco] Benth. [Lamiaceae] Advances in Environmental Biology. 2014;8(7):2301–2309.
    1. Fu Y., Zu Y., Chen L., et al. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytotherapy Research. 2007;21(10):989–994. doi: 10.1002/ptr.2179.
    1. Oussalah M., Caillet S., Lacroix M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157:H7 and Listeria monocytogenes . Journal of Food Protection. 2006;69(5):1046–1055.
    1. Fraternale D., Giamperi L., Bucchini A., et al. Composition and antifungal activity of essential oil of Salvia sclarea from Italy. Chemistry of Natural Compounds. 2005;41(5):604–606. doi: 10.1007/s10600-005-0221-9.
    1. Jirovetz L., Buchbauer G., Denkova Z., Slavchev A., Stoyanova A., Schmidt E. Chemical composition, antimicrobial activities and odor descriptions of various Salvia sp. and Thuja sp. essential oils. Nutrition-Vienna. 2006;30(4):p. 152.
    1. Cui H., Zhang X., Zhou H., Zhao C., Lin L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Botanical Studies. 2015;56(1):1–8. doi: 10.1186/s40529-015-0096-4.
    1. Jirovetz L., Wlcek K., Buchbauer G., et al. Antifungal activities of essential oils of salvia lavandulifolia, salvia officinalis and salvia sclarea against various pathogenic Candida species. Journal of Essential Oil-Bearing Plants. 2007;10(5):430–439. doi: 10.1080/0972060X.2007.10643576.
    1. Oke F., Aslim B., Ozturk S., Altundag S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chemistry. 2009;112(4):874–879. doi: 10.1016/j.foodchem.2008.06.061.
    1. Kasim L. S., Olaleye K. O., Fagbohun A. B., Ibitoye S. F., Adejumo O. E. Chemical composition and antibacterial activity of essential oils from Struchium sparganophora Linn. ktze asteraceae. Advances in Biological Chemistry. 2014;4(4):246–252. doi: 10.4236/abc.2014.44030.
    1. Mohamed A. A., Ali S. I., El-Baz F. K. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini Leaves. PLoS ONE. 2013;8(4) doi: 10.1371/journal.pone.0060269.e60269
    1. Hassanshahian M., Bayat Z., Saeidi S., Shiri Y. Antimicrobial activity of Trachyspermum ammi essential oil against human bacterial. International Journal of Biomedical and Advance Research. 2014;2(1):18–24.
    1. Imelouane B., Amhamdi H., Wathelet J. P., Ankit M., Khedid K., El Bachiri A. Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from eastern Morocco. International Journal of Agriculture and Biology. 2009;11(2):205–208.
    1. Santurio D. F., de Jesus F. P. K., Zanette R. A., Schlemmer K. B., Fraton A., Fries L. L. M. Antimicrobial activity of the essential oil of thyme and of thymol against Escherichia coli strains. Acta Scientiae Veterinariae. 2014;42(1):1–4.
    1. Ahmadi R., Alizadeh A., Ketabchi S. Antimicrobial activity of the essential oil of Thymus kotschyanus grown wild in Iran. International Journal of Biosciences. 2015;6(3):239–248.
    1. Shan B., Cai Y.-Z., Brooks J. D., Corke H. Potential application of spice and herb extracts as natural preservatives in cheese. Journal of Medicinal Food. 2011;14(3):284–290. doi: 10.1089/jmf.2010.0009.
    1. Sellam K., Ramchoun M., Khalouki F., Alem C., El-Rhaffari L. Biological investigations of antioxidant, antimicrobial properties and chemical composition of essential oil from Warionia saharae . Oxidants and Antioxidants in Medical Science. 2014;3(1):73–78. doi: 10.5455/oams.121113.or.056.
    1. Yousefbeyk F., Gohari A. R., Sourmaghi M. H. S., et al. Chemical composition and antimicrobial activity of essential oils from different parts of Daucus littoralis Smith subsp. hyrcanicus Rech. F. Journal of Essential Oil-Bearing Plants. 2014;17(4):570–576. doi: 10.1080/0972060x.2014.901610.
    1. Hammer K. A., Carson C. F., Riley T. V. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. Journal of Antimicrobial Chemotherapy. 2002;50(2):195–199. doi: 10.1093/jac/dkf112.
    1. Venturi C. R., Danielli L. J., Klein F., et al. Chemical analysis and in vitro antiviral and antifungal activities of essential oils from Glechon spathulata and Glechon marifolia . Pharmaceutical Biology. 2015;53(5):682–688. doi: 10.3109/13880209.2014.936944.
    1. Hammer K. A., Carson C. F. Antibacterial and antifungal activities of essential oils. In: Thormar H., editor. Lipids and Essential Oils as Antimicrobial Agents. London, UK: John Wiley & Sons; 2011. pp. 255–306.
    1. Hristova Y., Gochev V., Wanner J., et al. Chemical composition and antifungal activity of essential oil of Salvia sclarea L. from Bulgaria against clinical isolates of Candida species. Journal of Bioscience and Biotechnology. 2013;2(1):39–44.
    1. Aleksic V., Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiological Research. 2014;169(4):240–254. doi: 10.1016/j.micres.2013.10.003.
    1. Omidbaigi R., Yahyazadeh M., Zare R., Taheri H. The in vitro action of essential oils on Aspergillus flavus . Journal of Essential Oil-Bearing Plants. 2007;10(1):46–52. doi: 10.1080/0972060x.2007.10643518.
    1. Bouzabata A., Cabral C., Gonçalves M. J., et al. Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology. 2015;75:166–172. doi: 10.1016/j.fct.2014.11.009.
    1. Papajani V., Haloci E., Goci E., Shkreli R., Manfredini S. Evaluation of antifungal activity of Origanum vulgare and Rosmarinus officinalis essential oil before and after inclusion in β-cyclodextrine. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(5):270–273.
    1. Souza C. M. C., Pereira Junior S. A., da Silva Moraes T., et al. Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Medical Mycology. 2016;54(5):515–523. doi: 10.1093/mmy/myw003.
    1. Wang G.-S., Deng J.-H., Ma Y.-H., Shi M., Li B. Mechanisms, clinically curative effects, and antifungal activities of cinnamon oil and pogostemon oil complex against three species of Candida. Journal of Traditional Chinese Medicine. 2012;32(1):19–24. doi: 10.1016/S0254-6272(12)60026-0.
    1. Kocevski D., Du M., Kan J., Jing C., Lačanin I., Pavlović H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. Journal of Food Science. 2013;78(5):M731–M737. doi: 10.1111/1750-3841.12118.
    1. Latifah-Munirah B., Himratul-Aznita W. H., Mohd Zain N. Eugenol, an essential oil of clove, causes disruption to the cell wall of Candida albicans (ATCC 14053) Frontiers in Life Science. 2015;8(3):231–240. doi: 10.1080/21553769.2015.1045628.
    1. Sinico C., De Logu A., Lai F., et al. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. European Journal of Pharmaceutics and Biopharmaceutics. 2005;59(1):161–168. doi: 10.1016/j.ejpb.2004.06.005.
    1. Ibrahim N. A., El-Hawary S. S., Mohammed M. M. D., et al. Chemical composition, antiviral against avian influenza (H5N1) virus and antimicrobial activities of the essential oils of the leaves and fruits of Fortunella margarita, lour. swingle, growing in Egypt. Journal of Applied Pharmaceutical Science. 2015;5(1):006–012. doi: 10.7324/japs.2015.50102.
    1. Brand Y. M., Roa-Linares V. C., Betancur-Galvis L. A., Durán-García D. C., Stashenko E. Antiviral activity of Colombian Labiatae and Verbenaceae family essential oils and monoterpenes on Human Herpes viruses. Journal of Essential Oil Research. 2016;28(2):130–137. doi: 10.1080/10412905.2015.1093556.
    1. Allahverdiyev A., Duran N., Ozguven M., Koltas S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine. 2004;11(7-8):657–661. doi: 10.1016/j.phymed.2003.07.014.
    1. Wu X.-L., Ju D.-H., Chen J., et al. Immunologic mechanism of patchouli alcohol anti-H1N1 influenza virus may through regulation of the RLH signal pathway in vitro. Current Microbiology. 2013;67(4):431–436. doi: 10.1007/s00284-013-0381-y.
    1. Kiyohara H., Ichino C., Kawamura Y., Nagai T., Sato N., Yamada H. Patchouli alcohol: in vitro direct anti-influenza virus sesquiterpene in Pogostemon cablin Benth. Journal of Natural Medicines. 2012;66(1):55–61. doi: 10.1007/s11418-011-0550-x.
    1. Wu H., Li B., Wang X., Jin M., Wang G. Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza a (H2N2) virus. Molecules. 2011;16(8):6489–6501. doi: 10.3390/molecules16086489.
    1. Roy S., Chaurvedi P., Chowdhary A. Evaluation of antiviral activity of essential oil of Trachyspermum Ammi against Japanese encephalitis virus. Pharmacognosy Research. 2015;7(3):263–267. doi: 10.4103/0974-8490.157977.
    1. Pandey A. K., Singh P., Tripathi N. N. Chemistry and bioactivities of essential oils of some Ocimum species: an overview. Asian Pacific Journal of Tropical Biomedicine. 2014;4(9):682–694. doi: 10.12980/apjtb.4.2014c77.
    1. Abed K. F. Antimicrobial activity of essential oils of some medicinal plants from Saudi Arabia. Saudi Journal of Biological Sciences. 2007;14:53–60.
    1. Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—a review. Food and Chemical Toxicology. 2008;46(2):446–475. doi: 10.1016/j.fct.2007.09.106.
    1. Sell C. The Chemistry of Fragrances: From Perfumer to Consumer. Cambridge, UK: Royal Society of Chemistry; 2006.
    1. Böhme K., Barros-Velázquez J., Calo-Mata P., Aubourg S. P. Antimicrobial Compounds. Berlin, Germany: Springer; 2014. Antibacterial, antiviral and antifungal activity of essential oils: mechanisms and applications; pp. 51–81.
    1. Swamy M. K., Sinniah U. R., Akhtar M. S. In vitro pharmacological activities and GC-ms analysis of different solvent extracts of Lantana camara leaves collected from tropical region of Malaysia. Evidence-Based Complementary and Alternative Medicine. 2015;2015:9. doi: 10.1155/2015/506413.506413
    1. Pichersky E., Noel J. P., Dudareva N. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science. 2006;311(5762):808–811. doi: 10.1126/science.1118510.
    1. Scorzoni L., Benaducci T., Almeida A. M. F., Silva D. H. S., Bolzani V. D. S., Gianinni M. J. S. M. The use of standard methodology for determination of antifungal activity of natural products against medical yeasts Candida sp and Cryptococcus sp. Brazilian Journal of Microbiology. 2007;38(3):391–397. doi: 10.1590/s1517-83822007000300001.
    1. Angioni A., Barra A., Coroneo V., Dessi S., Cabras P. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. Journal of Agricultural and Food Chemistry. 2006;54(12):4364–4370. doi: 10.1021/jf0603329.
    1. Burt S. Essential oils: Their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology. 2004;94(3):223–253. doi: 10.1016/j.ijfoodmicro.2004.03.022.
    1. Faleiro M. L. The mode of antibacterial action of essential oils. In: Méndez-Vilas A., editor. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Boca Raton, Fla, USA: Brown Walker Press; 2011. pp. 1143–1156.
    1. Calvo M. A., Arosemena E. L., Shiva C., Adelantado C. Antimicrobial activity of plant natural extracts and essential oils. In: Mendez-Vilas A., editor. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. Barcelona, Spain: Formatex Research Center; 2012. pp. 1179–1185.
    1. Lahlou M. Methods to study the phytochemistry and bioactivity of essential oils. Phytotherapy Research. 2004;18(6):435–448. doi: 10.1002/ptr.1465.
    1. Raut J. S., Karuppayil S. M. A status review on the medicinal properties of essential oils. Industrial Crops and Products. 2014;62:250–264. doi: 10.1016/j.indcrop.2014.05.055.
    1. de Carvalho Galvão L. C., Fernandes Furletti V., Fernandes Bersan S. M., et al. Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evidence-Based Complementary and Alternative Medicine. 2012;2012:12. doi: 10.1155/2012/751435.751435
    1. Conner. Naturally occurring compounds. In: Davidison P. M., Branen A. L., editors. Antimicrobials in Foods. New York, NY, USA: Marcel Dekker; 1993. pp. 441–468.
    1. Kim J., Marshall M. R., Wei C.-I. Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry. 1995;43(11):2839–2845. doi: 10.1021/jf00059a013.
    1. Ramos-Nino M. E., Clifford M. N., Adams M. R. Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes . Journal of Applied Bacteriology. 1996;80(3):303–310. doi: 10.1111/j.1365-2672.1996.tb03224.x.
    1. Ouattara B., Simard R. E., Holley R. A., Piette G. J.-P., Bégin A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology. 1997;37(2-3):155–162. doi: 10.1016/S0168-1605(97)00070-6.
    1. Arora D. S., Kaur J. Antimicrobial activity of spices. International Journal of Antimicrobial Agents. 1999;12(3):257–262. doi: 10.1016/S0924-8579(99)00074-6.
    1. Sakagami Y., Kaikoh S., Kajimura K., Yokoyama H. Inhibitory effect of clove extract on vero-toxin production by enterohemorrhagic Escherichia coli O157:H7. Biocontrol Science. 2000;5(1):47–49. doi: 10.4265/bio.5.47.
    1. Skandamis P., Tsigarida E., Nychas G.-J. E. The effect of oregano essential oil on survival/death of Salmonella typhimurium in meat stored at 5°C under aerobic, VP/MAP conditions. Food Microbiology. 2002;19(1):97–103. doi: 10.1006/fmic.2001.0447.
    1. Zanetti S., Cannas S., Molicotti P., et al. Evaluation of the antimicrobial properties of the essential oil of Myrtus communis L. against clinical strains of Mycobacterium spp. Interdisciplinary Perspectives on Infectious Diseases. 2010;2010:3. doi: 10.1155/2010/931530.931530
    1. Lawal O. A., Ogunwande I. A., Omikorede O. E., et al. Chemical composition and antimicrobial activity of essential oil of Ocimum kilimandscharicum (R. Br.) Guerke: a new chemotype. American Journal of Essential Oils and Natural Products. 2014;2(1):41–46.
    1. Yamani H. A., Pang E. C., Mantri N., Deighton M. A. Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria. Frontiers in Microbiology. 2016;7, article 681 doi: 10.3389/fmicb.2016.00681.
    1. Singh S., Das S. S., Singh G., Schuff C., de Lampasona M. P., Catalán C. A. N. Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.) BioMed Research International. 2014;2014:10. doi: 10.1155/2014/918209.918209
    1. Radaelli M., da Silva B. P., Weidlich L., et al. Antimicrobial activities of six essential oils commonly used as condiments in Brazil against Clostridium perfringens . Brazilian Journal of Microbiology. 2016;47(2):424–430. doi: 10.1016/j.bjm.2015.10.001.
    1. Mahmoud A. M., El-Baky R. M. A., Ahmed A. B. F., Gad G. F. M. Antibacterial activity of essential oils and in combination with some standard antimicrobials against different pathogens isolated from some clinical specimens. American Journal of Microbiological Research. 2016;4(1):16–25.
    1. Mekonnen A., Yitayew B., Tesema A., Taddese S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis . International Journal of Microbiology. 2016;2016:8. doi: 10.1155/2016/9545693.9545693
    1. Delaquis P. J., Mazza G. Antimicrobial properties of isothiocyanate in food preservation. Food Technology. 1995;49:73–84.
    1. Juglal S., Govinden R., Odhav B. Spice oils for the control of co-occurring mycotoxin-producing fungi. Journal of Food Protection. 2002;65(4):683–687.
    1. Ebani V. V., Nardoni S., Bertelloni F., et al. Antibacterial and antifungal activity of essential oils against some pathogenic bacteria and yeasts shed from poultry. Flavour and Fragrance Journal. 2016;31(4):302–309. doi: 10.1002/ffj.3318.
    1. Reichling J., Schnitzler P., Suschke U., Saller R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties-an overview. Forschende Komplementarmedizin. 2009;16(2):79–90. doi: 10.1159/000207196.
    1. Wagstaff A. J., Faulds D., Goa K. L. Aciclovir: a reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1994;47(1):153–205. doi: 10.2165/00003495-199447010-00009.
    1. Schnitzler P., Astani A., Reichling J. Screening for antiviral activities of isolated compounds from essential oils. Evidence-Based Complementary and Alternative Medicine. 2011;2011:8. doi: 10.1093/ecam/nep187.253643
    1. Schnitzler P., Schön K., Reichling J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie. 2001;56(4):343–347.
    1. Koch C., Reichling J., Schnitzler P. Essential oils inhibit the replication of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) In: Preedy V. R., Watson R. R., editors. Botanical Medicine in Clinical Practices. Wallingsford, Calif, USA: CABI; 2008. pp. 192–197.
    1. Tragoolpua Y., Jatisatienr A. Anti-herpes simplex virus activities of Eugenia caryophyllus (Spreng.) Bullock & S. G. Harrison and essential oil, eugenol. Phytotherapy Research. 2007;21(12):1153–1158. doi: 10.1002/ptr.2226.
    1. Benencia F., Courrges M. C. In vitro and in vivo activity of eugenol on human herpesvirus. Phytotherapy Research. 2000;14(7):495–500. doi: 10.1002/1099-1573(200011)14:760;495::aid-ptr65062;;2-8.
    1. Niedermeyer T. H. J., Lindequist U., Mentel R., et al. Antiviral terpenoid constituents of Ganoderma pfeifferi. Journal of Natural Products. 2005;68(12):1728–1731. doi: 10.1021/np0501886.
    1. Hayashi K., Hayashi T., Ujita K., Takaishi Y. Characterization of antiviral activity of a sesquiterpene, triptofordin C-2. Journal of Antimicrobial Chemotherapy. 1996;37(4):759–768. doi: 10.1093/jac/37.4.759.
    1. Pusztai R., Hohmann J., Rédei D., Engi H., Molnár J. Inhibition of human cytomegalovirus IE gene expression by dihydro-β-agarofuran sesquiterpenes isolated from Euonymus species. In Vivo. 2008;22(6):787–792.
    1. Rollinger J. M., Steindl T. M., Schuster D., et al. Structure-based virtual screening for the discovery of natural inhibitors for human rhinovirus coat protein. Journal of Medicinal Chemistry. 2008;51(4):842–851. doi: 10.1021/jm701494b.
    1. García C. C., Talarico L., Almeida N., Colombres S., Duschatzky C., Damonte E. B. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytotherapy Research. 2003;17(9):1073–1075. doi: 10.1002/ptr.1305.
    1. Pourghanbari G., Nili H., Moattari A., Mohammadi A., Iraji A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2) VirusDisease. 2016;27(2):170–178. doi: 10.1007/s13337-016-0321-0.
    1. Holley R. A., Patel D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology. 2005;22(4):273–292. doi: 10.1016/j.fm.2004.08.006.
    1. Saad N. Y., Muller C. D., Lobstein A. Major bioactivities and mechanism of action of essential oils and their components. Flavour and Fragrance Journal. 2013;28(5):269–279. doi: 10.1002/ffj.3165.
    1. Turina A. D. V., Nolan M. V., Zygadlo J. A., Perillo M. A. Natural terpenes: self-assembly and membrane partitioning. Biophysical Chemistry. 2006;122(2):101–113. doi: 10.1016/j.bpc.2006.02.007.
    1. Cox S. D., Gustafson J. E., Mann C. M., et al. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli . Letters in Applied Microbiology. 1998;26(5):355–358. doi: 10.1046/j.1472-765x.1998.00348.x.
    1. Cox S. D., Mann C. M., Markham J. L., et al. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (Tea tree oil) Journal of Applied Microbiology. 2000;88(1):170–175. doi: 10.1046/j.1365-2672.2000.00943.x.
    1. Longbottom C. J., Carson C. F., Hammer K. A., Mee B. J., Riley T. V. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. Journal of Antimicrobial Chemotherapy. 2004;54(2):386–392. doi: 10.1093/jac/dkh359.
    1. Trombetta D., Castelli F., Sarpietro M. G., et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy. 2005;49(6):2474–2478. doi: 10.1128/AAC.49.6.2474-2478.2005.
    1. Ultee A., Kets E. P. W., Smid E. J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus . Applied and Environmental Microbiology. 1999;65(10):4606–4610.
    1. Ultee A., Bennik M. H. J., Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus . Applied and Environmental Microbiology. 2002;68(4):1561–1568. doi: 10.1128/aem.68.4.1561-1568.2002.
    1. de Souza E. L., de Barros J. C., de Oliveira C. E. V., da Conceição M. L. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus . International Journal of Food Microbiology. 2010;137(2-3):308–311. doi: 10.1016/j.ijfoodmicro.2009.11.025.
    1. Helander I. M., Alakomi H.-L., Latva-Kala K., et al. Characterization of the action of selected essential oil components on Gram-negative bacteria. Journal of Agricultural and Food Chemistry. 1998;46(9):3590–3595. doi: 10.1021/jf980154m.
    1. Cristani M., D'Arrigo M., Mandalari G., et al. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. Journal of Agricultural and Food Chemistry. 2007;55(15):6300–6308. doi: 10.1021/jf070094x.
    1. Thoroski J. Eugenol induced inhibition of extracellular enzyme production by Bacillus cereus . Journal of Food Protection. 1989;52:399–403.
    1. Devi K. P., Nisha S. A., Sakthivel R., Pandian S. K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Journal of Ethnopharmacology. 2010;130(1):107–115. doi: 10.1016/j.jep.2010.04.025.
    1. Wendakoon C. N., Sakaguchi M. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. Journal of Food Protection. 1995;58:280–283.
    1. Fitzgerald D. J., Stratford M., Gasson M. J., et al. Mode of antimicrobial action of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua . Journal of Applied Microbiology. 2004;97(1):104–113. doi: 10.1111/j.1365-2672.2004.02275.x.
    1. Lopez-Romero J. C., González-Ríos H., Borges A., Simões M. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus . Evidence-Based Complementary and Alternative Medicine. 2015;2015:9. doi: 10.1155/2015/795435.795435
    1. Szabó M. Á., Varga G. Z., Hohmann J., et al. Inhibition of quorum-sensing signals by essential oils. Phytotherapy Research. 2010;24(5):782–786. doi: 10.1002/ptr.3010.
    1. Arnal-Schnebelen B., Hadji-Minaglou F., Peroteau J.-F., Ribeyre F., De Billerbeck V. G. Essential oils in infectious gynaecological disease: a statistical study of 658 cases. International Journal of Aromatherapy. 2004;14(4):192–197. doi: 10.1016/j.ijat.2004.09.003.
    1. Yoon H. S., Moon S. C., Kim N. D., Park B. S., Jeong M. H., Yoo Y. H. Genistein induces apoptosis of RPE-J cells by opening mitochondrial PTP. Biochemical and Biophysical Research Communications. 2000;276(1):151–156. doi: 10.1006/bbrc.2000.3445.
    1. Armaka M., Papanikolaou E., Sivropoulou A., Arsenakis M. Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Research. 1999;43(2):79–92. doi: 10.1016/s0166-3542(99)00036-4.

Source: PubMed

3
Subscribe