Effects of Shift Work in a Sample of Italian Nurses: Analysis of Rest-Activity Circadian Rhythm

Letizia Galasso, Antonino Mulè, Lucia Castelli, Emiliano Cè, Vincenzo Condemi, Giuseppe Banfi, Eliana Roveda, Angela Montaruli, Fabio Esposito, Letizia Galasso, Antonino Mulè, Lucia Castelli, Emiliano Cè, Vincenzo Condemi, Giuseppe Banfi, Eliana Roveda, Angela Montaruli, Fabio Esposito

Abstract

Shift work can lead to circadian desynchronization due to temporary misalignment between working hours and physiological and behavioral functioning, resulting in compromised health, insomnia, worsening of sleep quality, reduced ability to work during waking hours, and increased cardiovascular risk. We evaluated the effects of shift work on the rest-activity circadian rhythm (RAR) and health status of Italian orthopaedic nurses. The study population was 59 nurses: 44 worked the night shift and 15 worked the day shift. All carried out continuous 5-day actigraphic monitoring to assess RAR, including both the working and the rest period. The rhythmometric analysis showed that, during the working period, the night shift nurses had a significantly lower amplitude than the day shift nurses (p < 0.001), and the acrophase was significantly different between the two groups (p < 0.01). When we stratified the two groups by median body mass index (<25 kg/m2 normal weight and ≥25 kg/m2 overweight), during the working period, we noted a significantly lower amplitude for both the normal weight and the overweight nurses who worked the night shift (p < 0.01 and p < 0.001, normal weight and overweight respectively). The current findings suggest the need for further study of the relationship between activity levels and shift work.

Trial registration: ClinicalTrials.gov NCT03453398.

Keywords: actigraphic monitoring; activity levels; health care; nurses; occupational health; shift work.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Participant recruitment. Study design, participant adherence, and dropout.
Figure 2
Figure 2
Shift schedule for night shift (NS) and day shift (DS) nurses. The grey indicators denote the duration of actigraphic monitoring. O: night-off; R: rest; D: diurnal shift.
Figure 3
Figure 3
Example of a biological rhythm and its parameters: Acrophase (φ), Amplitude (A) and MESOR (M) [36].
Figure 4
Figure 4
Rest-activity circadian rhythms: data collected by actigraphy in night shift (NS) and day shift nurses (DS) during the working period and the rest period. The dashed black line denotes night shift nurses (NS) for the working and the rest period; the continued grey line denotes day shift nurses (DS) for the working and the rest period.

References

    1. Boivin D.B. Disturbances of hormonal circadian rhythms in shift workers. In: Cardinali D.P., Pandi-Perumal S.R., editors. Neuroendocrine Correlates of Sleep/Wakefulness. Springer; Boston, MA, USA: 2006. pp. 325–354.
    1. Boudreau P., Yeh W.H., Dumont G.A., Boivin D.B. Circadian variation of heart rate variability across sleep stages. Sleep. 2013;36:1919–1928. doi: 10.5665/sleep.3230.
    1. Sack R.L., Auckley D., Auger R.R., Carskadon M.A., Wright K.P., Jr., Vitiello M.V., Zhdanova I.V., American Academy of Sleep Medicine Circadian rhythm sleep disorders: Part I, basic principles, shift work and jet lag disorders. Sleep. 2007;30:1460–1483. doi: 10.1093/sleep/30.11.1460.
    1. Sack R.L., Auckley D., Auger R.R., Carskadon M.A., Wright K.P., Jr., Vitiello M.V., Zhdanova I.V., American Academy of Sleep Medicine Circadian rhythm sleep disorders: Part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. Sleep. 2007;30:1484–1501. doi: 10.1093/sleep/30.11.1484.
    1. Wang X.S., Armstrong M.E.G., Cairns B.J., Key T.J., Travis R.C. Shift work and chronic disease: The epidemiological evidence. Occup. Med. 2011;61:78–89. doi: 10.1093/occmed/kqr001.
    1. Boivin D.B., Boudreau P. Impacts of shift work on sleep and circadian rhythms. Pathol. Biol. 2014;62:292–301. doi: 10.1016/j.patbio.2014.08.001.
    1. Saksvik I.B., Bjorvatn B., Hetland H., Sandal G.M., Pallesen S. Individual differences in tolerance to shift work—A systematic review. Sleep Med. Rev. 2011;15:221–235. doi: 10.1016/j.smrv.2010.07.002.
    1. Selvi Y., Özdemir P.G., Özdemir O., Aydin A., Beşiroğlu L. Influence of night shift work on psychologic state and quality of life in health workers. J. Psychiatry Neurol. Sci. 2010;23:238–243. doi: 10.5350/DAJPN2010230403t.
    1. Roveda E., Castelli L., Galasso L., Mulè A., Cè E., Condemi V., Banfi G., Montaruli A., Esposito F. Differences in daytime activity levels and daytime sleep between night and day duty: An observational study in italian orthopedic nurses. Front. Physiol. 2021;12:628231. doi: 10.3389/fphys.2021.628231.
    1. Cè E., Doria C., Roveda E., Montaruli A., Galasso L., Castelli L., Mulè A., Longo S., Coratella G., D’Aloia P., et al. Reduced neuromuscular performance in night shift orthopedic nurses: New insights from a combined electromyographic and force signals approach. Front. Physiol. 2020;11:693. doi: 10.3389/fphys.2020.00693.
    1. Chellappa S.L. Circadian misalignment: A biological basis for mood vulnerability in shift work. Eur. J. Neurosci. 2020;52:3846–3850. doi: 10.1111/ejn.14871.
    1. Knutsson A., Bøggild H. Gastrointestinal disorders among shift workers. Scand. J. Work Environ. Health. 2010;36:85–95. doi: 10.5271/sjweh.2897.
    1. Wong I.S., McLeod C.B., Demers P.A. Shift work trends and risk of work injury among canadian workers. Scand. J. Work Environ. Health. 2011;37:54–61. doi: 10.5271/sjweh.3124.
    1. Khaleque A. Sleep deficiency and quality of life of shift workers. Soc. Indic. Res. 1999;46:181–189. doi: 10.1023/A:1006971209513.
    1. Rajaratnam S.M., Arendt J. Health in a 24-h society. Lancet. 2001;358:999–1005. doi: 10.1016/S0140-6736(01)06108-6.
    1. Schernhammer E.S., Laden F., Speizer F.E., Willett W.C., Hunter D.J., Kawachi I., Colditz G.A. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J. Natl. Cancer Inst. 2001;93:1563–1568. doi: 10.1093/jnci/93.20.1563.
    1. Cornelissen G., Otsuka K. Chronobiology of aging: A mini-review. Gerontology. 2017;63:118–128. doi: 10.1159/000450945.
    1. Abbott S.M., Malkani R.G., Zee P.C. Circadian disruption and human health: A bidirectional relationship. Eur. J. Neurosci. 2020;51:567–583. doi: 10.1111/ejn.14298.
    1. Gehrman P., Marler M., Martin J.L., Shochat T., Corey-Bloom J., Ancoli-Israel S. The timing of activity rhythms in patients with dementia is related to survival. J. Gerontol. A Biol. Sci. Med. Sci. 2004;59:1050–1055. doi: 10.1093/gerona/59.10.M1050.
    1. Mormont M.C., Waterhouse J., Bleuzen P., Giacchetti S., Jami A., Bogdan A., Lellouch J., Misset J.L., Touitou Y., Lévi F. Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin. Cancer Res. 2000;6:3038–3045.
    1. Tranah G.J., Waterhouse J., Bleuzen P., Giacchetti S., Jami A., Bogdan A., Lellouch J., Misset J.L., Touitou Y., Lévi F. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 2011;70:722–732. doi: 10.1002/ana.22468.
    1. Paudel M.L., Taylor B.C., Ancoli-Israel S., Blackwell T., Stone K.L., Tranah G., Redline S., Cummings S.R., Ensrud K.E., Osteoporotic Fractures in Men (MrOS) Study Rest/activity rhythms and mortality rates in older men: MrOS sleep study. Chronobiol. Int. 2010;27:363–377. doi: 10.3109/07420520903419157.
    1. Tranah G.J., Blackwell T., Ancoli-Israel S., Paudel M.L., Ensrud K.E., Cauley J.A., Redline S., Hillier T.A., Cummings S.R., Stone K.L., et al. Circadian activity rhythms and mortality: The study of osteoporotic fractures. J. Am. Geriatr. Soc. 2010;58:282–291. doi: 10.1111/j.1532-5415.2009.02674.x.
    1. Hosseinabadi M.B., Ebrahimi M.H., Khanjani N., Biganeh J., Mohammadi S., Abdolahfard M. The effects of amplitude and stability of circadian rhythm and occupational stress on burnout syndrome and job dissatisfaction among irregular shift working nurses. J. Clin. Nurs. 2019;28:1868–1878. doi: 10.1111/jocn.14778.
    1. Rosa D., Terzoni S., Dellafiore F., Destrebecq A. Systematic review of shift work and nurses’ health. Occup. Med. 2019;69:237–243. doi: 10.1093/occmed/kqz063.
    1. Chang W.P., Li H.B. Differences in workday sleep fragmentation, rest-activity cycle, sleep quality, and activity level among nurses working different shifts. Chronobiol. Int. 2019;36:1761–1771. doi: 10.1080/07420528.2019.1681441.
    1. Nabe-Nielsen K., Quist H.G., Garde A.H., Aust B. Shift work and changes in health behaviors. J. Occup. Environ. Med. 2011;53:1413–1417. doi: 10.1097/JOM.0b013e31823401f0.
    1. Barbadoro P., Santarelli L., Croce N., Bracci M., Vincitorio D., Prospero E., Minelli A. Rotating shift-work as an independent risk factor for overweight italian workers: A cross-sectional study. PLoS ONE. 2013;8:e63289.
    1. KivimÄki M., Kuisma P., Virtanen M., Elovainio M. Does shift work lead to poorer health habits? A comparison between women who had always done shift work with those who had never done shift work. Work Stress. 2001;15:3–13. doi: 10.1080/02678370118685.
    1. Neil-Sztramko S.E., Gotay C.C., Demers P.A., Campbell K.L. Physical activity, physical fitness, and body composition of canadian shift workers: Data from the canadian health measures survey cycles 1 and 2. J. Occup. Environ. Med. 2016;58:94–100. doi: 10.1097/JOM.0000000000000574.
    1. Peplonska B., Bukowska A., Sobala W. Rotating night shift work and physical activity of nurses and midwives in the cross-sectional study in Łódź, Poland. Chronobiol. Int. 2014;31:1152–1159. doi: 10.3109/07420528.2014.957296.
    1. Alves M.S., Andrade R.Z., Silva G.C., Mota M.C., Resende S.G., Teixeira K.R., Gonçalves B.F., Crispim C.A. Social jetlag among night workers is negatively associated with the frequency of moderate or vigorous physical activity and with energy expenditure related to physical activity. J. Biol. Rhythm. 2017;32:83–93. doi: 10.1177/0748730416682110.
    1. Loef B., van der Beek A.J., Holtermann A., Hulsegge G., van Baarle D., Proper K.I. Objectively measured physical activity of hospital shift workers. Scand. J. Work Environ. Health. 2018;44:265–273. doi: 10.5271/sjweh.3709.
    1. Costa G. The problem: Shiftwork. Chronobiol. Int. 1997;14:89–98. doi: 10.3109/07420529709001147.
    1. World Health Organization (WHO) Obesity: Preventing and Managing the Global Epidemic. WHO; Geneva, Switzerland: 2000. (Report of a WHO Consultation; WHO Technical Report Series 894).
    1. Halberg F., Carandente F., Cornelissen G., Katinas G.S. Glossary of chronobiology. Chronobiologia. 1977;4:1–189.
    1. Nelson W., Tong L.Y., Lee J.K., Halberg F. Methods of cosinor rhythmometry. Chronobiologia. 1979;6:305–323.
    1. Bartter F.C., Delea C.S., Baker W., Halberg F., Lee J.K. Chronobiology in the diagnosis and treatment of mesor-hypertension. Chronobiologia. 1976;3:199–213.
    1. Koukkari W.L., Halberg F., Gordon S.A. Quantifying Rhythmic Movements of Albizzia julibrissin Pinnules. Plant Physiol. 1973;51:1084–1088. doi: 10.1104/pp.51.6.1084.
    1. Koukkari W.L., Duke S.H., Halberg F., Lee J.K. Circadian rhythmic leaflet movements: Student exercise in chronobiology. Chronobiologia. 1974;1:281–302.
    1. Halberg F., Reinberg A. Circadian rhythm and low frequency rhythms in human physiology. J. Physiol. 1967;59:117–200.
    1. De Prins J., Cornelissen G., Halberg F. Harmonic interpolation on equispaced series covering integral period of anticipated circadian rhythm in adriamycin tolerance. Chronobiologia. 1977;4:173.
    1. Blume C., Santhi N., Schabus M. “nparACT” package for R: A free software tool for the non-parametric analysis of actigraphy data. MethodsX. 2016;3:430–435. doi: 10.1016/j.mex.2016.05.006.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Academic Press; New York, NY, USA: 1977.
    1. Atkinson G., Davenne D. Relationships between sleep, physical activity and human health. Physiol. Behav. 2007;90:229–235. doi: 10.1016/j.physbeh.2006.09.015.
    1. Kaliterna L.L., Prizmic L.Z., Zganec N. Quality of life, life satisfaction and happiness in shift- and non-shiftworkers. Rev. Saude Publica. 2004;38:3–10. doi: 10.1590/S0034-89102004000700002.
    1. Atkinson G., Fullick S., Grindey C., Maclaren D., Waterhouse J. Exercise, energy balance and the shift worker. Sports Med. 2008;38:671–685. doi: 10.2165/00007256-200838080-00005.
    1. Atkinson G., Edwards B., Reilly T., Waterhouse J. Exercise as a synchronizer of human circadian rhythms: An update and discussion of the methodological problems. Eur. J. Appl. Physiol. 2007;99:331–341. doi: 10.1007/s00421-006-0361-z.
    1. Tevy M.F., Giebultowicz J., Pincus Z., Mazzoccoli G., Vinciguerra M. Aging signaling pathways and circadian clock-dependent metabolic derangements. Trends Endocrinol. Metab. 2013;24:229–237. doi: 10.1016/j.tem.2012.12.002.
    1. Mormont M.C., Waterhouse J. Contribution of the rest-activity circadian rhythm to quality of life in cancer patients. Chronobiol. Int. 2002;19:313–323. doi: 10.1081/CBI-120002606.
    1. Antunes L.C., Levandovski R., Dantas G., Caumo W., Hidalgo M.P. Obesity and shift work: Chronobiological aspects. Nutr. Res. Rev. 2010;23:155–168. doi: 10.1017/S0954422410000016.
    1. Depner C.M., Stothard E.R., Wright K.P., Jr. Metabolic consequences of sleep and circadian disorders. Curr. Diabetes Rep. 2014;14:507. doi: 10.1007/s11892-014-0507-z.
    1. Ekmekcioglu C., Touitou Y. Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation. Obes. Rev. 2011;12:14–25. doi: 10.1111/j.1467-789X.2010.00716.x.
    1. Garaulet M., Gomez-Abellan P. Timing of food intake and obesity: A novel association. Physiol. Behav. 2014;134:44–50. doi: 10.1016/j.physbeh.2014.01.001.
    1. McHill A.W., Wright K.P., Jr. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obes. Rev. 2017;18:15–24. doi: 10.1111/obr.12503.
    1. Scheer F.A., Hilton M.F., Mantzoros C.S., Shea S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA. 2009;106:4453–4458. doi: 10.1073/pnas.0808180106.
    1. Garaulet M., Ordovas J.M., Madrid J.A. The chronobiology, etiology and pathophysiology of obesity. Int. J. Obes. 2010;34:1667–1683. doi: 10.1038/ijo.2010.118.

Source: PubMed

3
Subscribe