Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota

Albert Palleja, Alireza Kashani, Kristine H Allin, Trine Nielsen, Chenchen Zhang, Yin Li, Thorsten Brach, Suisha Liang, Qiang Feng, Nils Bruun Jørgensen, Kirstine N Bojsen-Møller, Carsten Dirksen, Kristoffer S Burgdorf, Jens J Holst, Sten Madsbad, Jun Wang, Oluf Pedersen, Torben Hansen, Manimozhiyan Arumugam, Albert Palleja, Alireza Kashani, Kristine H Allin, Trine Nielsen, Chenchen Zhang, Yin Li, Thorsten Brach, Suisha Liang, Qiang Feng, Nils Bruun Jørgensen, Kirstine N Bojsen-Møller, Carsten Dirksen, Kristoffer S Burgdorf, Jens J Holst, Sten Madsbad, Jun Wang, Oluf Pedersen, Torben Hansen, Manimozhiyan Arumugam

Abstract

Background: Roux-en-Y gastric bypass (RYGB) is an effective means to achieve sustained weight loss for morbidly obese individuals. Besides rapid weight reduction, patients achieve major improvements of insulin sensitivity and glucose homeostasis. Dysbiosis of gut microbiota has been associated with obesity and some of its co-morbidities, like type 2 diabetes, and major changes of gut microbial communities have been hypothesized to mediate part of the beneficial metabolic effects observed after RYGB. Here we describe changes in gut microbial taxonomic composition and functional potential following RYGB.

Methods: We recruited 13 morbidly obese patients who underwent RYGB, carefully phenotyped them, and had their gut microbiomes quantified before (n = 13) and 3 months (n = 12) and 12 months (n = 8) after RYGB. Following shotgun metagenomic sequencing of the fecal microbial DNA purified from stools, we characterized the gut microbial composition at species and gene levels followed by functional annotation.

Results: In parallel with the weight loss and metabolic improvements, gut microbial diversity increased within the first 3 months after RYGB and remained high 1 year later. RYGB led to altered relative abundances of 31 species (P < 0.05, q < 0.15) within the first 3 months, including those of Escherichia coli, Klebsiella pneumoniae, Veillonella spp., Streptococcus spp., Alistipes spp., and Akkermansia muciniphila. Sixteen of these species maintained their altered relative abundances during the following 9 months. Interestingly, Faecalibacterium prausnitzii was the only species that decreased in relative abundance. Fifty-three microbial functional modules increased their relative abundance between baseline and 3 months (P < 0.05, q < 0.17). These functional changes included increased potential (i) to assimilate multiple energy sources using transporters and phosphotransferase systems, (ii) to use aerobic respiration, (iii) to shift from protein degradation to putrefaction, and (iv) to use amino acids and fatty acids as energy sources.

Conclusions: Within 3 months after morbidly obese individuals had undergone RYGB, their gut microbiota featured an increased diversity, an altered composition, an increased potential for oxygen tolerance, and an increased potential for microbial utilization of macro- and micro-nutrients. These changes were maintained for the first year post-RYGB.

Trial registration: Current controlled trials (ID NCT00810823 , NCT01579981 , and NCT01993511 ).

Figures

Fig. 1
Fig. 1
Metabolic and microbial diversity improvements during a 1-year period after RYGB. Box plots represent features measured at the three different time points. Lines connect the measures from the same subject. For each pairwise comparison between time points, the P value of the Wilcoxon signed-rank test (P), the difference between the medians (Δ), and difference between medians normalized by time difference (Δ′) are denoted. a Host metabolism improvements. Postprandial glucose and GLP-1 levels were calculated as area under the curve during a standardized meal test. b Microbial species diversity improvements
Fig. 2
Fig. 2
Gut microbial community differences induced by RYGB. Principal component analysis based on log transformed mOTU species abundances shows a clear separation between pre-RYGB and post-RYGB fecal samples. The variation explained by each component is shown on its axis. MO months, Y year
Fig. 3
Fig. 3
Changes in individual gut microbial species following RYGB. Median fold changes in relative abundances of 31 mOTU species that changed between baseline and 3 months (3MO, bottom panel), and 16 among these that changed between baseline and 1 year (1Y, top panel) after RYGB. For each bacterial species, the cloud of circles represents all fold changes calculated when excluding one other species from the abundance table. The horizontal grey lines at −1 and 1 mark when the microbes halved or doubled their relative abundance. Exclusion of Prevotella copri substantially altered the fold change for many species and the corresponding fold change is denoted as an empty triangle. The colored band in each panel shows the statistical significance of Wilcoxon signed-rank tests after our compositionality test. Asterisks mark species that have already been reported in previous studies
Fig. 4
Fig. 4
Microbial functional changes following RYGB. Box plots represent fold changes (log2) in the 53 KEGG modules that increased in relative abundance between baseline and 3 months (3MO, left panel) and 44 among these that increased between baseline and 1 year (1Y, right panel) after RYGB. The different KEGG functional categories are represented by different colors and grouped together when possible with corresponding labels at the right side of the plot. PTS phosphotransferase systems, GABA gamma-aminobutyric acid
Fig. 5
Fig. 5
A model of gut microbial changes following RYGB. Blue boxes show inferred changes in microbial features (functional potential or taxonomic), while green boxes show the effects induced by RYGB either in the gut or in the host metabolism. Black boxes indicate hypotheses based on our data or other studies. Arrows connect shifts that are related. Since we did not measure inflammation markers we do not report an increase or decrease in inflammation, but we connect it to an observed change based on existing literature. All features shown here exhibited changes 3 months after RYGB and most maintained the changes up to 1 year after RYGB. Asterisks denote features that did not maintain the changes 1 year after RYGB

References

    1. Mutch DM, Clément K. Unraveling the genetics of human obesity. PLoS Genet. 2006;2:e188. doi: 10.1371/journal.pgen.0020188.
    1. Sandholt CH, Grarup N, Pedersen O, Hansen T. Genome-wide association studies of human adiposity: zooming in on synapses. Mol Cell Endocrinol. 2015;418(Pt 2):90–100. doi: 10.1016/j.mce.2015.09.029.
    1. Sandholt CH, Pedersen O. Obesity: beige adipocytes--will they beat obesity? Nat Rev Endocrinol. 2015;11:694–6. doi: 10.1038/nrendo.2015.178.
    1. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. doi: 10.1186/1471-2458-9-88.
    1. Aron-Wisnewsky J, Clement K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr Atheroscler Rep. 2014;16:454. doi: 10.1007/s11883-014-0454-9.
    1. Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.
    1. Werling M, Fändriks L, Björklund P, Maleckas A, Brandberg J, Lönroth H, le Roux CW, Olbers T. Long-term results of a randomized clinical trial comparing Roux-en-Y gastric bypass with vertical banded gastroplasty. Br J Surg. 2013;100:222–30.
    1. Catalan V, Gomez-Ambrosi J, Ramirez B, Rotellar F, Pastor C, Silva C, Rodriguez A, Gil MJ, Cienfuegos JA, Fruhbeck G. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg. 2007;17:1464–74.
    1. Williams DB, Hagedorn JC, Lawson EH, Galanko JA, Safadi BY, Curet MJ, Morton JM. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3:8–13.
    1. Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, Fandriks L, le Roux CW, Nielsen J, Backhed F. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38.
    1. Dirksen C, Jørgensen NB, Bojsen-Møller KN, Kielgast U, Jacobsen SH, Clausen TR, Worm D, Hartmann B, Rehfeld JF, Damgaard M, et al. Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes (Lond). 2013;37:1452–9.
    1. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.
    1. Thaler JP, Cummings DE. Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25. doi: 10.1210/en.2009-0367.
    1. Jorgensen NB, Dirksen C, Bojsen-Moller KN, Jacobsen SH, Worm D, Hansen DL, Kristiansen VB, Naver L, Madsbad S, Holst JJ. Exaggerated glucagon-like peptide 1 response is important for improved beta-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes. 2013;62:3044–52.
    1. Patti ME, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, Badman MK, Maratos-Flier E, Mun EC, Pihlajamaki J, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17:1671–7.
    1. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9. doi: 10.1038/nature11552.
    1. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.
    1. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5. doi: 10.1073/pnas.0504978102.
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3. doi: 10.1038/4441022a.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31. doi: 10.1038/nature05414.
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.
    1. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.
    1. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.
    1. Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, Flint HJ. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond). 2008;32:1720–4.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
    1. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14. doi: 10.1126/scitranslmed.3000322.
    1. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–23. doi: 10.1016/j.chom.2008.02.015.
    1. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–24. e1711–1712.
    1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.
    1. Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.
    1. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.
    1. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106:2365–70.
    1. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, Mariat D, Corthier G, Doré J, Henegar C, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57.
    1. Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, Zucker JD, Doré J, Clément K. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.
    1. Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong ML, Xu A, Chavakis T, Bornstein AB, Ehrhart-Bornstein M, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J. 2013;13:514–22.
    1. Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW, Bloom SR, Darzi A, Athanasiou T, Marchesi JR, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011;60:1214–23.
    1. Liou AP, Paziuk M, Luevano JM, Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra141. doi: 10.1126/scitranslmed.3005687.
    1. Jorgensen NB, Jacobsen SH, Dirksen C, Bojsen-Moller KN, Naver L, Hvolris L, Clausen TR, Wulff BS, Worm D, Lindqvist Hansen D, et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with type 2 diabetes and normal glucose tolerance. Am J Physiol Endocrinol Metab. 2012;303:E122–31.
    1. Martinussen C, Bojsen-Møller KN, Dirksen C, Jacobsen SH, Jørgensen NB, Kristiansen VB, Holst JJ, Madsbad S. Immediate enhancement of first-phase insulin secretion and unchanged glucose effectiveness in patients with type 2 diabetes after Roux-en-Y gastric bypass. Am J Physiol Endocrinol Metab. 2015;308:E535–44.
    1. Kultima JR, Sunagawa S, Li J, Chen W, Chen H, Mende DR, Arumugam M, Pan Q, Liu B, Qin J, et al. MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One. 2012;7:e47656.
    1. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, Coelho LP, Arumugam M, Tap J, Nielsen HB, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods. 2013;10:1196–9.
    1. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32:834–41.
    1. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27.
    1. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–205. doi: 10.1093/nar/gkt1076.
    1. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075. doi: 10.1371/journal.pcbi.1004075.
    1. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Krogh Pedersen H, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6.
    1. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100:9440–5. doi: 10.1073/pnas.1530509100.
    1. Yu J, Feng Q, Wong SH, Zhang D, Liang QY, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2015. doi:10.1136/gutjnl-2015-309800.
    1. Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, Caspers MP, Rashid MU, Weintraub A, Nord CE, Savell A, Hu Y, et al. Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces. MBio. 2015;6:e01693-15.
    1. Everard A, Cani PD. Gut microbiota and GLP-1. Rev Endocr Metab Disord. 2014;15:189–96. doi: 10.1007/s11154-014-9288-6.
    1. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217.
    1. McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531. doi: 10.1371/journal.pcbi.1003531.
    1. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
    1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.
    1. Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, Huttenhower C, Ley RE. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput Biol. 2013;9:e1002863.
    1. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2015. doi:10.1136/gutjnl-2014-308778.
    1. Hartman AL, Lough DM, Barupal DK, Fiehn O, Fishbein T, Zasloff M, Eisen JA. Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci U S A. 2009;106:17187–92.
    1. Sandoval D. Bariatric surgeries: beyond restriction and malabsorption. Int J Obes (Lond) 2011;35(Suppl 3):S45–9. doi: 10.1038/ijo.2011.148.
    1. Mashima I, Nakazawa F. The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol. 2015. pii: JB.02512-14. [Epub ahead of print].
    1. Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, Hudault S, Bridonneau C, Northen T, Bowen B, et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. MBio. 2015;6:e00300-15.
    1. Sawaya RA, Jaffe J, Friedenberg L, Friedenberg FK. Vitamin, mineral, and drug absorption following bariatric surgery. Curr Drug Metab. 2012;13:1345–55. doi: 10.2174/138920012803341339.
    1. Kononova SV, Nesmeyanova MA. Phosphonates and their degradation by microorganisms. Biochemistry (Mosc) 2002;67:184–95. doi: 10.1023/A:1014409929875.
    1. Schleif R. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 2000;16:559–65. doi: 10.1016/S0168-9525(00)02153-3.
    1. Shin AC, Berthoud HR. Food reward functions as affected by obesity and bariatric surgery. Int J Obes (Lond) 2011;35(Suppl 3):S40–4. doi: 10.1038/ijo.2011.147.
    1. Manning S, Pucci A, Batterham RL. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms. J Clin Invest. 2015;125:939–48. doi: 10.1172/JCI76305.
    1. Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL, Berthoud HR. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1273–82.
    1. Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E, Bäckhed F, Nielsen J. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2015;11:834.
    1. Bojsen-Møller KN, Jacobsen SH, Dirksen C, Jørgensen NB, Reitelseder S, Jensen JE, Kristiansen VB, Holst JJ, van Hall G, Madsbad S. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass. Am J Clin Nutr. 2015;102:600–7.
    1. Dirksen C, Damgaard M, Bojsen-Møller KN, Jørgensen NB, Kielgast U, Jacobsen SH, Naver LS, Worm D, Holst JJ, Madsbad S, et al. Fast pouch emptying, delayed small intestinal transit, and exaggerated gut hormone responses after Roux-en-Y gastric bypass. Neurogastroenterol Motil. 2013;25:346–e255.
    1. Mason EE, Munns JR, Kealey GP, Wangler R, Clarke WR, Cheng HF, Printen KJ. Effect of gastric bypass on gastric secretion. 1977. Surg Obes Relat Dis. 2005;1:155–60. discussion 161–152.
    1. Smith CD, Herkes SB, Behrns KE, Fairbanks VF, Kelly KA, Sarr MG. Gastric acid secretion and vitamin B12 absorption after vertical Roux-en-Y gastric bypass for morbid obesity. Ann Surg. 1993;218:91–6. doi: 10.1097/00000658-199307000-00014.
    1. Welters CF, Dejong CH, Deutz NE, Heineman E. Effects of parenteral arginine supplementation on the intestinal adaptive response after massive small bowel resection in the rat. J Surg Res. 1999;85:259–66. doi: 10.1006/jsre.1999.5607.
    1. Wunderlichová L, Buňková L, Koutný M, Jančová P, František B. Formation, degradation, an detoxification of putrescine by foodborne bacteria: a review. Compr Rev Food Sci Food Saf. 2014;13:1012–30. doi: 10.1111/1541-4337.12099.
    1. Bird J, Mohd-Hidir S, Lewis DA. Putrescine--a potent endogenous anti-inflammatory substance in inflammatory exudates. Agents Actions. 1983;13:342–7. doi: 10.1007/BF01971486.
    1. Lovaas E, Carlin G. Spermine: an anti-oxidant and anti-inflammatory agent. Free Radic Biol Med. 1991;11:455–61. doi: 10.1016/0891-5849(91)90061-7.
    1. Li JV, Reshat R, Wu Q, Ashrafian H, Bueter M, le Roux CW, Darzi A, Athanasiou T, Marchesi JR, Nicholson JK, et al. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Front Microbiol. 2011;2:183.
    1. Kurihara S, Kato K, Asada K, Kumagai H, Suzuki H. A putrescine-inducible pathway comprising PuuE-YneI in which gamma-aminobutyrate is degraded into succinate in Escherichia coli K-12. J Bacteriol. 2010;192:4582–91. doi: 10.1128/JB.00308-10.
    1. Ashrafian H, le Roux CW. Metabolic surgery and gut hormones--a review of bariatric entero-humoral modulation. Physiol Behav. 2009;97:620–31. doi: 10.1016/j.physbeh.2009.03.012.
    1. Gameiro A, Reimann F, Habib AM, O’Malley D, Williams L, Simpson AK, Gribble FM. The neurotransmitters glycine and GABA stimulate glucagon-like peptide-1 release from the GLUTag cell line. J Physiol. 2005;569:761–72.
    1. Urbain JL, Penninckx F, Siegel JA, Vandenborre P, Van Cutsem E, Vandenmaegdenbergh V, De Roo M. Effect of proximal vagotomy and Roux-en-Y diversion on gastric emptying kinetics in asymptomatic patients. Clin Nucl Med. 1990;15:688–91.

Source: PubMed

3
Subscribe