Pharmacokinetics and Tolerance of the Phage Endolysin-Based Candidate Drug SAL200 after a Single Intravenous Administration among Healthy Volunteers

Soo Youn Jun, In Jin Jang, Seonghae Yoon, Kyungho Jang, Kyung-Sang Yu, Joo Youn Cho, Moon-Woo Seong, Gi Mo Jung, Seong Jun Yoon, Sang Hyeon Kang, Soo Youn Jun, In Jin Jang, Seonghae Yoon, Kyungho Jang, Kyung-Sang Yu, Joo Youn Cho, Moon-Woo Seong, Gi Mo Jung, Seong Jun Yoon, Sang Hyeon Kang

Abstract

This study was a phase 1, single-center, randomized, double-blind, placebo-controlled, single-dosing, and dose-escalating study of intravenous SAL200. It is a new candidate drug for the treatment of antibiotic-resistant staphylococcal infections based on a recombinant form of the phage endolysin SAL-1. The study evaluated the pharmacokinetics, pharmacodynamics, and tolerance among healthy male volunteers after the intravenous infusion of single ascending doses of SAL200 (0.1, 0.3, 1, 3, and 10 mg/kg of body weight). SAL200 was well tolerated, and no serious adverse events (AEs) were observed in this clinical study. Most AEs were mild, self-limiting, and transient. The AEs reported in more than three participants were fatigue, rigors, headache, and myalgia. No clinically significant values with respect to the findings of clinical chemistry, hematology, and coagulation analyses, urinalysis, vital signs, and physical examinations were observed, and no notable trends in our electrocardiogram (ECG) results for any tested dose were noticed. A greater-than-dose-proportional increase with regard to systemic exposure and the maximum serum concentration was observed when the SAL200 dose was increased from 0.1 mg/kg to 10 mg/kg. This investigation constitutes the first-in-human phase 1 study of an intravenously administered, phage endolysin-based drug. (This study has been registered at ClinicalTrials.gov under identifier NCT01855048 and at the Clinical Research Information Service [https://cris.nih.go.kr/cris/] under identifier KCT0000968.).

Keywords: SAL200; phage endolysin; phase 1 clinical study; staphylococcal infections.

Copyright © 2017 Jun et al.

Figures

FIG 1
FIG 1
Consolidated Standards of Reporting Trials (CONSORT) diagram. Exclusion criteria (1), subjects with evidence or history of clinically significant hepatic, renal, neurologic, endocrine, pulmonary, hematological, neoplastic, cardiovascular, or psychiatric disease. Exclusion criteria (6), subjects who have systolic blood pressure 150 mmHg or diastolic blood pressure >100 mmHg when measured at a sitting position after resting for 3 min. Exclusion criteria (13), subjects who are evaluated as ineligible for study participation for other reasons, including clinical laboratory test results.
FIG 2
FIG 2
Mean single-dose serum concentration-time profiles of SAL200. Linear (A) and log-transformed (B) profiles are shown. •, 0.1 mg/kg; ○, 0.3 mg/kg; ▼, 1 mg/kg; △, 3 mg/kg; ■, 10 mg/kg. Error bars denote SDs.

References

    1. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771. doi:10.1001/jama.298.15.1763.
    1. Smith JK, Bumgardner JD, Courtney HS, Smeltzer MS, Haggard WO. 2010. Antibiotic-loaded chitosan film for infection prevention: a preliminary in vitro characterization. J Biomed Mater Res B Appl Biomater 94:203–211. doi:10.1002/jbm.b.31642.
    1. Micek ST. 2007. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 45:S184–S190. doi:10.1086/519471.
    1. Appleman MD, Citron DM. 2010. Efficacy of vancomycin and daptomycin against Staphylococcus aureus isolates collected over 29 years. Diagn Microbiol Infect Dis 66:441–444. doi:10.1016/j.diagmicrobio.2009.11.008.
    1. Kinney KK. 2010. Treatment of infections caused by antimicrobial-resistant gram-positive bacteria. Am J Med Sci 340:209–217. doi:10.1097/MAJ.0b013e3181e99aa4.
    1. Crompton JA, North DS, Yoon M, Steenbergen JM, Lamp KC, Forrest GN. 2010. Outcomes with daptomycin in the treatment of Staphylococcus aureus infections with a range of vancomycin MICs. J Antimicrob Chemother 65:1784–1791. doi:10.1093/jac/dkq200.
    1. Young I, Wang I, Roof WD. 2000. Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128. doi:10.1016/S0966-842X(00)01705-4.
    1. Young R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430–481.
    1. Loessner MJ. 2005. Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487. doi:10.1016/j.mib.2005.06.002.
    1. Loessner MJ, Schneider A, Scherer S. 1995. A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl Environ Microbiol 61:1150–1152.
    1. Low LY, Yang C, Perego M, Osterman A, Liddington RC. 2005. Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280:35433–35439. doi:10.1074/jbc.M502723200.
    1. Entenza JM, Loeffler JM, Grandgirard D, Fischetti VA, Moreillon P. 2005. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob Agents Chemother 49:4789–4792. doi:10.1128/AAC.49.11.4789-4792.2005.
    1. O'Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. 2005. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187:7161–7164. doi:10.1128/JB.187.20.7161-7164.2005.
    1. Yuan Y, Peng Q, Gao M. 2012. Characteristics of a broad lytic spectrum endolysin from phage BtCS33 of Bacillus thuringiensis. BMC Microbiol 12:297. doi:10.1186/1471-2180-12-297.
    1. Jado I, López R, García E, Fenoll A, Casal J, García P. 2003. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52:967–973. doi:10.1093/jac/dkg485.
    1. Nelson D, Loomis L, Fischetti VA. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 98:4107–4112. doi:10.1073/pnas.061038398.
    1. Loeffler JM, Djurkovic S, Fischetti VA. 2003. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 71:6199–6204. doi:10.1128/IAI.71.11.6199-6204.2003.
    1. McCullers JA, Karlström A, Iverson AR, Loeffler JM, Fischetti VA. 2007. Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog 3:e28. doi:10.1371/journal.ppat.0030028.
    1. Loeffler JM, Nelson D, Fischetti VA. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172. doi:10.1126/science.1066869.
    1. Cheng Q, Nelson D, Zhu S, Fischetti VA. 2005. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother 49:111–117. doi:10.1128/AAC.49.1.111-117.2005.
    1. Rashel M, Uchiyama J, Ujihara T, Uehara Y, Kuramoto S, Sugihara S, Yagyu K, Muraoka A, Sugai M, Hiramatsu K, Honke K, Matsuzaki S. 2007. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage ϕMR11. J Infect Dis 196:1237–1247. doi:10.1086/521305.
    1. Yoong P, Schuch R, Nelson D, Fischetti VA. 2006. PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis. J Bacteriol 188:2711–2714. doi:10.1128/JB.188.7.2711-2714.2006.
    1. Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A. 2010. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 1:9–16. doi:10.4161/bbug.1.1.9818.
    1. Jun SY, Jung GM, Son JS, Yoon SJ, Choi YJ, Kang SH. 2011. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrob Agents Chemother 55:1764–1767. doi:10.1128/AAC.01097-10.
    1. Jun SY, Jung GM, Yoon SJ, Oh MD, Choi YJ, Lee WJ, Kong JC, Seol JG, Kang SH. 2013. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents 41:156–161. doi:10.1016/j.ijantimicag.2012.10.011.
    1. Jun SY, Jung GM, Yoon SJ, Choi YJ, Koh WS, Moon KS, Kang SH. 2014. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother 58:2084–2088. doi:10.1128/AAC.02232-13.
    1. Jun SY, Jung GM, Yoon SJ, Youm SY, Han HY, Lee JH, Kang SH. 2016. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol 43:1013–1016. doi:10.1111/1440-1681.12613.

Source: PubMed

3
Subscribe