Active video games and health indicators in children and youth: a systematic review

Allana G LeBlanc, Jean-Philippe Chaput, Allison McFarlane, Rachel C Colley, David Thivel, Stuart J H Biddle, Ralph Maddison, Scott T Leatherdale, Mark S Tremblay, Allana G LeBlanc, Jean-Philippe Chaput, Allison McFarlane, Rachel C Colley, David Thivel, Stuart J H Biddle, Ralph Maddison, Scott T Leatherdale, Mark S Tremblay

Abstract

Background: Active video games (AVGs) have gained interest as a way to increase physical activity in children and youth. The effect of AVGs on acute energy expenditure (EE) has previously been reported; however, the influence of AVGs on other health-related lifestyle indicators remains unclear.

Objective: This systematic review aimed to explain the relationship between AVGs and nine health and behavioural indicators in the pediatric population (aged 0-17 years).

Data sources: Online databases (MEDLINE, EMBASE, psycINFO, SPORTDiscus and Cochrane Central Database) and personal libraries were searched and content experts were consulted for additional material.

Data selection: Included articles were required to have a measure of AVG and at least one relevant health or behaviour indicator: EE (both habitual and acute), adherence and appeal (i.e., participation and enjoyment), opportunity cost (both time and financial considerations, and adverse events), adiposity, cardiometabolic health, energy intake, adaptation (effects of continued play), learning and rehabilitation, and video game evolution (i.e., sustainability of AVG technology).

Results: 51 unique studies, represented in 52 articles were included in the review. Data were available from 1992 participants, aged 3-17 years, from 8 countries, and published from 2006-2012. Overall, AVGs are associated with acute increases in EE, but effects on habitual physical activity are not clear. Further, AVGs show promise when used for learning and rehabilitation within special populations. Evidence related to other indicators was limited and inconclusive.

Conclusions: Controlled studies show that AVGs acutely increase light- to moderate-intensity physical activity; however, the findings about if or how AVG lead to increases in habitual physical activity or decreases in sedentary behaviour are less clear. Although AVGs may elicit some health benefits in special populations, there is not sufficient evidence to recommend AVGs as a means of increasing daily physical activity.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Prisma flow diagram of included…
Figure 1. Prisma flow diagram of included studies.

References

    1. WHO (2010) Global recommendations on physical activity for health. Geneva: World Health Organization.
    1. Hallal PC, Anderson LB, Bull FC, Guthold R, Haskell W, et al. (2012) Global physical activity levels: surveillance progress, pitfalls, and prospects. The Lancet S20–30.
    1. Leatherdale ST, Ahmed R (2011) Screen-based sedentary behaviours among a nationally representative sample of youth: are Canadian kids couch potatoes? Chronic Dis Inj Can 31: 141–6.
    1. Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, et al. (2011) Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act 8: 98.
    1. Barnett A, Cerin E, Baranowski T (2011) Active video games for youth: a systematic review. J Phys Act Health 8: 724–37.
    1. Peng W, Lin JH, Crouse J (2011) Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol Behav Soc Netw 14: 681–8.
    1. Peng W, Crouse JC, Lin JH (2013) Using active video games for physical activity promotion: a systematic review of the current state of research. Health Educ Behav 40: 171–92.
    1. Guy S, Ratzki-Leewing A, Gwadry-Sridhar F (2011) Moving beyond the stigma: systematic review of video games and their potential to combat obesity. Int J Hypertens 179124
    1. Foley L, Maddison R (2012) Use of active video games to increase physical activity in children: a (virtual) reality? Pediatr Exerc Sci 22: 7–22.
    1. Biddiss E, Irwin J (2010) Active video games to promote physical activity in children and youth. Arch Pediatr Adolesc Med 164: 664–72.
    1. King NA, Caudwell P, Hopkins M, Byrne NM, Colley R, et al. (2007) Metabolic and behavioral compensatory responses to exercise interventions: barriers to weight loss. Obesity (Silver Spring) 15: 1373–83.
    1. Fremeau AE, Mallam KM, Metcalf BS, Hosking J, Voss LD, et al. (2011) The impact of school-time activity on total physical activity: the activitystat hypothesis (EarlyBird46). Int J Obes 35: 1277–83.
    1. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, et al. (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64: 383–94.
    1. Graves L, Stratton G, Ridgers ND, Cable NT (2008) Energy expenditure in adolescents playing new generation computer games. Br J Sports Med 42: 592–4.
    1. Maloney AE, Bethea TC, Kelsey KS, Marks JT, Paez S, et al. (2008) A pilot of a video game (DDR) to promote physical activity and decrease sedentary screen time. Obesity 16: 2074–80.
    1. Duncan MJ, Staples V (2010) The impact of a school-based active video game play intervention on children's physical activity during recess. Human Movement 11: 95–9.
    1. Duncan MJ, Birch S, Woodfield L, Hankey J (2011) Physical activity levels during a 6-week, school-based, active videogaming intervention using the gamercize power stepper in British children. Medicina Sportiva 15: 81–7.
    1. Ni Mhurchu CN, Maddison R, Jiang Y, Jull A, Prapavessis H, et al. (2008) Couch potatoes to jumping beans: a pilot study of the effect of active video games on physical activity in children. Int J Behav Nutr Phys Act 5: 8.
    1. Graves LE, Ridgers ND, Atkinson G, Stratton G (2010) The effect of active video gaming on children's physical activity, behavior preferences and body composition. Pediatr Exerc Sci 22: 535–46.
    1. Baranowski T, Abdelsamad D, Baranowski J, O'Connor TM, Thompson D, et al. (2012) Impact of an active video game on healthy children's physical activity. Pediatrics 129: e636–42.
    1. Maddison R, Foley L, Ni MC, Jiang Y, Jull A, Prapavessis H, et al. (2011) Effects of active video games on body composition: a randomized controlled trial. Am J Clin Nutr 94: 156–63.
    1. Errickson SE, Maloney AE, Thorpe D, Giuliani C, Rosenberg AM (2012) “Dance Dance Revolution” used by 7- and 8-year-olds to boost physical activity: is coaching necessary for adherence to an exercise prescription? Games for Health Journal 1: 45–50.
    1. Maloney AE, Threlkeld KA, Cook WL (2012) Comparative effectiveness of a 12-week physical activity intervention for overweight and obese youth: exergaming with “Dance Dance Revolution”. Games for Health Journal 1: 96–103.
    1. Murphy EC, Carson L, Neal W, Baylis C, Donley D, et al. (2009) Effects of an exercise intervention using Dance Dance Revolution on endothelial function and other risk factors in overweight children. Int J Pediatr Obes 4: 205–14.
    1. Bethea TC, Berry D, Maloney AE, Sikich L (2012) Pilot study of an active screen time game correlates with improved physical fitness in minority elementary school youth. Games for Health Journal 1: 29–36.
    1. Owens SG, Garner JC III, Loftin JM, van BN, Ermin K (2011) Changes in physical activity and fitness after 3 months of home Wii FitTM use. J Strength Cond Res 25: 3191–7.
    1. Fogel VA, Miltenberger RG, Graves R, Koehler S (2010) The effects of exergaming on physical activity among inactive children in a physical education classroom. J Appl Behav Anal 43: 591–600.
    1. Gao Z, Hannon JC, Newton M, Huang C, Gao Z, et al. (2011) Effects of curricular activity on students' situational motivation and physical activity levels. Res Q Exerc Sport 82: 536–44.
    1. Adamo KB, Rutherford JA, Goldfield GS (2010) Effects of interactive video game cycling on overweight and obese adolescent health. Appl Phys Nutr Met 35: 805–15.
    1. Penko AL, Barkley JE (2010) Motivation and physiologic responses of playing a physically interactive video game relative to a sedentary alternative in children. Ann Behav Med 39: 162–9.
    1. Bailey BW, McInnis K, Bailey BW, McInnis K (2011) Energy cost of exergaming: a comparison of the energy cost of 6 forms of exergaming. Arch Pediatr Adolesc Med 165: 597–602.
    1. Fawkner SG, Niven A, Thin AG, Macdonald MJ, Oakes JR (2010) Adolescent girls' energy expenditure during dance simulation active computer gaming. J Sports Sci 28: 61–5.
    1. Graf DL, Pratt LV, Hester CN, Short KR (2009) Playing active video games increases energy expenditure in children. Pediatrics 124: 534–40.
    1. Graves LE, Ridgers ND, Stratton G (2008) The contribution of upper limb and total body movement to adolescents' energy expenditure whilst playing Nintendo Wii. Eur J Appl Physiol 104: 617–23.
    1. Graves LE, Ridgers ND, Williams K, Stratton G, Atkinson G, et al. (2010) The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. J Phys Act Health 7: 393–401.
    1. Lam JWK, Sit CHP, McManus AM (2011) Play pattern of seated video game and active “exergame” alternatives. J Exerc Sci Fit 9: 24–30.
    1. Lanningham-Foster L, Jensen TB, Foster RC, Redmond AB, Walker BA, et al. (2006) Energy expenditure of sedentary screen time compared with active screen time for children. Pediatrics 118: e1831–5.
    1. Lanningham-Foster L, Foster RC, McCrady SK, Jensen TB, Mitre N, et al. (2009) Activity-promoting video games and increased energy expenditure. J Pediatr 15: 819–23.
    1. Maddison R, Ni Mhurchu CN, Jull A, Jiang Y, Prapavessis H, et al. (2007) Energy expended playing video console games: an opportunity to increase children's physical activity? Pediatr Exerc Sci 19: 334–43.
    1. Mellecker RR, McManus AM (2008) Energy expenditure and cardiovascular responses to seated and active gaming in children. Arch Pediatr Adolesc Med 162: 886–91.
    1. Mellecker RR, Lanningham-Foster L, Levine JA, McManus AM (2010) Energy intake during activity enhanced video game play. Appetite 55: 343–7.
    1. Mitre N, Foster RC, Lanningham-Foster L, Levine JA (2011) The energy expenditure of an activity-promoting video game compared to sedentary video games and TV watching. J Pediatr Endocrinol 24: 689–95.
    1. Perron RM, Graham C, Feldman JR, Moffett RA, Hall EE (2011) Do exergames allow children to achieve physical activity intensity commensurate with national guidelines? Int J Exerc Sci 4: 257–64.
    1. Sit CH, Lam JW, McKenzie TL, Sit CHP, Lam JWK, et al. (2010) Direct observation of children's preferences and activity levels during interactive and online electronic games. J Phys Act Health 7: 484–9.
    1. Smallwood SR, Morris MM, Fallows SJ, Buckley JP (2012) Physiologic responses and energy expenditure of Kinect active video game play in schoolchildren. Arch Pediatr Adolesc Med 166: 1005–9.
    1. Straker L, Abbott R (2007) Effect of screen-based media on energy expenditure and heart rate in 9- to 12-year-old children. Pediatr Exerc Sci 19: 459–71.
    1. Roemmich JN, Lambiase Ms MJ, McCarthy TF, Feda DM, Kozlowski KF (2012) Autonomy supportive environments and mastery as basic factors to motivate physical activity in children: a controlled laboratory study. Int J Behav Nutr Phys Act 9: 16.
    1. White K, Schofield G, Kilding AE (2011) Energy expended by boys playing active video games. J Sci Med Sport 14: 130–4.
    1. Chin A Paw M, Jacobs WM, Vaessen EP, Titze S, van MW (2008) The motivation of children to play an active video game. J Sci Med Sport 11: 163–6.
    1. Paez S, Maloney A, Kelsey K, Wiesen C, Rosenberg A (2009) Parental and environmental factors associated with physical activity among children participating in an active video game. Pediatr Phys Ther 21: 245–53.
    1. Dixon R, Maddison R, Ni Mhurchu CN, Jull A, Meagher-Lundberg P, et al. (2010) Parents' and children's perceptions of active video games: a focus group study. J Child Health Care 14: 189–99.
    1. Epstein LH, Beecher MD, Graf JL, Roemmich JN (2007) Choice of interactive dance and bicycle games in overweight and nonoverweight youth. Ann Behav Med 33: 124–31.
    1. Jones C, Hammig B (2009) Case report: injuries associated with interactive game consoles: preliminary data. Phys Sportsmed 37: 138–40.
    1. Rubin D (2010) Triad of spinal pain, spinal joint dysfunction, and extremity pain in 4 pediatric cases of “Wii-itis”: a 21st century pediatric condition. J Chiropr Med 9: 84–9.
    1. Maddison R, Ni Mhurchu CN, Jull A, Prapavessis H, Foley LS, et al. (2012) Active video games: the mediating effect of aerobic fitness on body composition. Int J Behav Nutr Phys Act 2012 9: 54.
    1. Madsen KA, Yen S, Wlasiuk L, Newman TB, Lustig R (2007) Feasibility of a dance videogame to promote weight loss among overweight children and adolescents. Arch Pediatr Adolesc Med 106: 105–7.
    1. Jannink MJ, van der Wilden GJ, Navis DW, Visser G, Gussinklo J, et al. A low-cost video game applied for training of upper extremity function in children with cerebral palsy: a pilot study. Cyberpsychol Behav 11: 27–32.
    1. Wuang YP, Chiang CS, Su CY, Wang CC (2011) Effectiveness of virtual reality using Wii gaming technology in children with Down syndrome. Res Develop Disabil 32: 312–21.
    1. Berg P, Becker T, Martian A, Primrose KD, Wingen J (2012) Motor control outcomes following Nintendo Wii use by a child with Down syndrome. Pediatr Phys Ther 24: 78–84.
    1. Chang YJ, Chen SF, Huang JD (2011) A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Dev Disabil Res Rev 32: 2566–70.
    1. Shih CH, Shih CJ, Shih CT (2011) Assisting people with multiple disabilities by actively keeping the head in an upright position with a Nintendo Wii Remote Controller through the control of an environmental stimulation. Res Dev Disabil 32: 2005–10.
    1. Shih CH, Chung CC (2011) Enabling people with developmental disabilities to actively follow simple instructions and perform designated physical activities according to simple instructions with Nintendo Wii Balance Boards by controlling environmental stimulation. Res Dev Disabil 32: 2780–4.
    1. Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P (2008) Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther 88: 1196–207.
    1. Getchell N, Miccinello D, Blom M, Morris L, Szaroleta M (2012) Comparing energy expenditure in adolescents with and without autism while playing Nintendo Wii games. Games for Health Journal 1: 58–61.
    1. Widman LM, McDonald CM, Abresch RT (2006) Effectiveness of an upper extremity exercise device integrated with computer gaming for aerobic training in adolescents with spinal cord dysfunction. J Spinal Cord Med 29: 363–70.
    1. Daley AJ (2009) Can exergaming contribute to improving physical activity levels and health outcomes in children? Pediatrics 124: 763–71.

Source: PubMed

3
Subscribe