SARS-CoV-2 Seroprevalence among Healthcare Workers after the First and Second Pandemic Waves

Nathalie de Visscher, Xavier Holemans, Aline Gillain, Anne Kornreich, Raphael Lagasse, Philippe Piette, Manfredi Ventura, Frédéric Thys, Nathalie de Visscher, Xavier Holemans, Aline Gillain, Anne Kornreich, Raphael Lagasse, Philippe Piette, Manfredi Ventura, Frédéric Thys

Abstract

Background: The Grand Hôpital de Charleroi is a large non-academic Belgian hospital that treated a large number of COVID-19 inpatients. In the context of this pandemic, all professions-combined healthcare workers (HCWs), and not only direct caregivers, are a frontline workforce in contact with suspected and confirmed COVID-19 cases and seem to be a high-risk group for exposure. The aim of our study was to estimate the prevalence of anti-SARS-CoV-2 antibodies in HCWs in our hospital after the first and second pandemic waves and to characterize the distribution of this seroprevalence in relation to various criteria. Methods: At the end of the two recruitment periods, a total of 4008 serological tests were performed in this single-center cross-sectional study. After completing a questionnaire including demographic and personal data, possible previous COVID-19 diagnostic test results and/or the presence of symptoms potentially related to COVID-19, the study participants underwent blood sampling and serological testing using DiaSorin's LIAISON® SARS-CoV-2 S1/S2 IgG test for the first phase and LIAISON® SARS-CoV-2 TrimericS IgG test for the second phase of this study. Results: In total, 302 study participants (10.72%) in the first round of the study and 404 (33.92%) in the second round were positive for SARS-CoV-2-IgG antibodies. The prevalence of seropositivity observed after the second wave was 3.16 times higher than after the first wave. We confirmed that direct, prolonged, and repeated contact with patients or their environment was a predominant seroconversion factor, but more unexpectedly, that this was the case for all HCWs and not only caregivers. Finally, the notion of high-risk contact seemed more readily identifiable in one's workplace than in one's private life. Conclusions: Our study confirmed that HCWs are at a significantly higher risk of contracting COVID-19 than the general population, and suggests that repeated contacts with at-risk patients, regardless of the HCWs' professions, represents the most important risk factor for seroconversion (Clinicaltrials.gov number, NCT04723290).

Keywords: Belgium; SARS-CoV-2; healthcare workers; pandemic waves; seroprevalence.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K., Lau E., Wong J., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020;382:1199e207. doi: 10.1056/NEJMoa2001316.
    1. World Health Organization WHO Health Emergency Dashboard. [(accessed on 4 March 2021)]; Available online: .
    1. COVID-19—Bulletin Epidemiologique du 3 Mars 2021. [(accessed on 4 March 2021)]. Available online: .
    1. Sahu A.K., Amrithanand V., Mathew R., Aggarwal P., Nayer J., Bhoi S. COVID-19 in health care workers—A systematic review and meta-analysis. Am. J. Emerg. Med. 2020;38:1727–1731. doi: 10.1016/j.ajem.2020.05.113.
    1. Galanis P., Vraka I., Fragkou D., Bilali A., Kaitelidou D. Seroprevalence of SARS-CoV-2 antibodies and associated factors in health care workers: A systematic review and meta-analysis. J. Hosp. Infect. 2020;108:120–134. doi: 10.1016/j.jhin.2020.11.008.
    1. Miller T.E., Beltran W.F.G., Bard A.Z., Gogakos T., Anahtar M.N., Astudillo M.G., Yang D., Thierauf J., Fisch A.S., Mahowald G.K., et al. Clinical sensitivity and interpretation of PCR and serological COVID-19 diagnostics for patients presenting to the hospital. FASEB J. 2020;34:13877–13884. doi: 10.1096/fj.202001700RR.
    1. Kortela E., Kirjavainen V., Ahava M.J., Jokiranta S.T., But A., Lindahl A., Jääskeläinen A.E., Jääskeläinen A.J., Järvinen A., Jokela P., et al. Real-life clinical sensitivity of SARS-CoV-2 RT-PCR test in symptomatic patients. PLoS ONE. 2021;16:e0251661. doi: 10.1371/journal.pone.0251661.
    1. Woloshin S., Patel N., Kesselheim A.S. False Negative Tests for SARS-CoV-2 Infection—Challenges and Implications. N. Engl. J. Med. 2020;383:e38. doi: 10.1056/NEJMp2015897.
    1. Green D.A., Zucker J., Westblade L.F., Whittier S., Rennert H., Velu P., Craney A., Cushing M., Liu D., Sobieszczyk M.E., et al. Clinical Performance of SARS-CoV-2 Molecular Tests. J. Clin. Microbiol. 2020;58:995. doi: 10.1128/JCM.00995-20.
    1. Deeks J.J., Dinnes J., Takwoingi Y., Davenport C., Spijker R., Taylor-Phillips S. Cochrane COVID-19 Diagnostic Test Accuracy Group. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2020;6:CD013652.
    1. Sethuraman N., Jeremiah S.S., Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020;323:2249–2251. doi: 10.1001/jama.2020.8259.
    1. Jin J.M., Bai P., He W., Wu F., Liu X.F., Han D.M., Liu S., Yang J.K. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health. 2020;8:152. doi: 10.3389/fpubh.2020.00152.
    1. Wilson E.B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 1927;22:209–212. doi: 10.1080/01621459.1927.10502953.
    1. Pearson K. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1900;50:157–175. doi: 10.1080/14786440009463897.
    1. Nussbaumer-Streit B., Mayr V., Dobrescu A.I., Chapman A., Persad E., Klerings I., Wagner G., Siebert U., Christof C., Zachariah C., et al. Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database Syst. Rev. 2020;4:CD013574. doi: 10.1002/14651858.cd013574.
    1. Sjödin H., Wilder-Smith A., Osman S., Farooq Z., Rocklöv J. Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Eurosurveillance. 2020;25:2000280. doi: 10.2807/1560-7917.ES.2020.25.13.2000280.
    1. Rostami A., Sepidarkish M., Leeflang M., Riahi S.M., Shiadeh M.N., Esfandyari E., Mokdad A.H., Hotez P.J., Gasser R.B. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2020;27:331–340. doi: 10.1016/j.cmi.2020.10.020.
    1. Vilibic-Cavlek T., Stevanovic V., Ilic M., Barbic L., Capak K., Tabain I., Krleza J.L., Ferenc T., Hruskar Z., Topic R.Z., et al. SARS-CoV-2 Seroprevalence and Neutralizing Antibody Response after the First and Second COVID-19 Pandemic Wave in Croatia. Pathogens. 2021;10:774. doi: 10.3390/pathogens10060774.
    1. Meylan S., Dafni U., Lamoth F., Tsourti Z., Lobritz M.A., Regina J., Bressin P., Senn L., Grandbastien B., Andre C., et al. SARS-CoV-2 seroprevalence in healthcare workers of a Swiss tertiary care centre at the end of the first wave: A cross-sectional study. BMJ Open. 2021;11:e049232. doi: 10.1136/bmjopen-2021-049232.
    1. Etyang A.O., Lucinde R., Karanja H., Kalu C., Mugo D., Nyagwange J., Gitonga J., Tuju J., Wanjiku P., Karani A., et al. Seroprevalence of Antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 Among Healthcare Workers in Kenya. Clin. Infect. Dis. 2021;74:288–293. doi: 10.1093/cid/ciab346.
    1. Prakash O., Solanki B., Sheth J., Makwana G., Kadam M., Vyas S., Shkula A., Pethani J., Tiwari H. SARS-CoV2 IgG antibody: Seroprevalence among health care workers. Clin. Epidemiol. Glob. Health. 2021;11:100766. doi: 10.1016/j.cegh.2021.100766.
    1. Galan M.I., Velasco M., Casas L., Goyanes M.J., Rodríguez-Caravaca G., Losa-García J.E., Noguera C., Castilla V., Working Group Alcorcón COVID-19 Investigators Hospital-Wide SARS-CoV-2 seroprevalence in health care workers in a Spanish teaching hospital. Enferm. Infecc. Microbiol. Clin. (Engl. Ed.) 2020;18:302–309.
    1. Steensels D., Oris E., Coninx L., Nuyens D., Delforge M.L., Vermeersch P., Heylen L. Hospital-Wide SARS-CoV-2 Antibody Screening in 3056 Staff in a Tertiary Center in Belgium. JAMA. 2020;324:195–197. doi: 10.1001/jama.2020.11160.
    1. Mortgat L., Barbezange C., Fischer N., Heyndrickx L., Hutse V., Thomas I., Vuylsteke B., Arien K., Desombere I., Duysburghe E. SARS-CoV-2 Prevalence and Seroprevalence among Healthcare Workers in Belgian Hospitals: Baseline Results of a Prospective Cohort Study. medRxiv. 2020 doi: 10.1101/2020.10.03.20204545.
    1. Venugopal U., Jilani N., Rabah S., Shariff M.A., Jawed M., Batres A.M., Abubacker M., Menon S., Pillai A., Shabarek N., et al. SARS-CoV-2 seroprevalence among health care workers in a New York City hospital: A cross-sectional analysis during the COVID-19 pandemic. Int. J. Infect. Dis. 2021;102:63–69. doi: 10.1016/j.ijid.2020.10.036.
    1. Psichogiou M., Karabinis A., Pavlopoulou I.D., Basoulis D., Petsios K., Roussos S., Pratikaki M., Jahaj E., Protopapas K., Leontis K., et al. Antibodies against SARS-CoV-2 among health care workers in a country with low burden of COVID-19. PLoS ONE. 2020;15:e0243025. doi: 10.1371/journal.pone.0243025.
    1. Shields A., Faustini S.E., Perez-Toledo M., Jossi S., Aldera E., Allen J.D., Al Taei S., Backhouse C., Bosworth A., Dunbar L.A., et al. SARS-CoV-2 seroprevalence and asymptomatic viral carriage in healthcare workers: A cross-sectional study. Thorax. 2020;75:1089–1094. doi: 10.1136/thoraxjnl-2020-215414.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323:1239–1242. doi: 10.1001/jama.2020.2648.
    1. Dudley J.P., Lee N.T. Disparities in Age-specific Morbidity and Mortality From SARS-CoV-2 in China and the Republic of Korea. Clin. Infect. Dis. 2020;71:863–865. doi: 10.1093/cid/ciaa354.
    1. Scully E.P., Haverfield J., Ursin R.L., Tannenbaum C., Klein S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 2020;20:442–447. doi: 10.1038/s41577-020-0348-8.
    1. Behrens G., Cossmann A., Stankov M., Witte T., Ernst D., Happle C., Jablonka A. Perceived versus proven SARS-CoV-2-specific immune responses in health-care professionals. Infection. 2020;48:631–634. doi: 10.1007/s15010-020-01461-0.
    1. Zhou Q., Gao Y., Wang X., Liu R., Du P., Wang X., Zhang X., Lu S., Wang Z., Shi Q., et al. Nosocomial infections among patients with COVID-19, SARS and MERS: A rapid review and meta-analysis. Ann. Transl. Med. 2020;8:629. doi: 10.21037/atm-20-3324.

Source: PubMed

3
Subscribe