Different epidemiology of bloodstream infections in COVID-19 compared to non-COVID-19 critically ill patients: a descriptive analysis of the Eurobact II study

Niccolò Buetti, Alexis Tabah, Ambre Loiodice, Stéphane Ruckly, Abdullah Tarik Aslan, Giorgia Montrucchio, Andrea Cortegiani, Nese Saltoglu, Bircan Kayaaslan, Firdevs Aksoy, Akova Murat, Özlem Akdoğan, Kemal Tolga Saracoglu, Cem Erdogan, Marc Leone, Ricard Ferrer, José-Artur Paiva, Yoshiro Hayashi, Mahesh Ramanan, Andrew Conway Morris, François Barbier, Jean-François Timsit, Eurobact 2 study group, Jeffrey Lipman, Edward Litton, Anna Maria Palermo, Timothy Yap, Ege Eroglu, Koji Hosokawa, Hideki Yoshida, Shigeki Fujitani, Farid Zand, Ata Mahmoodpoor, Seyed Mohammad Nasirodin Tabatabaei, Omar Elrabi, Ghaleb A Almekhlafi, Gabriela Vidal, Marta Aparicio, Irene Alonzo, Silvio A Namendys-Silva, Mariana Hermosillo, Roberto Alejandro Castillo, Liesbet De Bus, Jan De Waele, Isabelle Hollevoet, Nicolas De Schryver, Nicolas Serck, Pedja Kovacevic, Biljana Zlojutro, Etienne Ruppe, Philippe Montravers, Thierry Dulac, Jérémy Castanera, Alexandre Massri, Charlotte Guesdon, Pierre Garcon, Matthieu Duprey, François Philippart, Marc Tran, Cédric Bruel, Pierre Kalfon, Gaëtan Badre, Sophie Demeret, Loïc Le Guennec, Matteo Bassetti, Daniele Giacobbe, Gabriele Sales, Ivan Daroui, Giovanni Lodi, Mariachiara Ippolito, Davide Bellina, Andrea Di Guardo, Monica Rocco, Silvia Fiorelli, Adam Mikstacki, Mariusz Peichota, Iwona Pietraszek-Grzywaczewska, Pedro Póvoa, Andriy Krystopchuk, Ana Teresa, António Manuel Pereira de Figueiredo, Isabel Botelho, Vasco Costa, Rui Pedro Cunha, Alexey Gritsan, Vladislav Belskiy, Mikhail Furman, Maria Martinez, Vanessa Casares, Maria Pilar Gracia Arnillas, Rosana Munoz Bermudez, Alejandro Ubeda, Maria Salgado, Emilio Maseda, Alejandro Suarez De La Rica, Miguel Angel Blasco-Navalpotro, Alberto Orejas Gallego, Josef Prazak, J L Pagani, S Abed-Maillard, Arzu Topeli Iskit, Selcuk Mehtap, Solakoğlu Ceyhun, Ayşe Kaya Kalem, Ibrahim Kurt, Murat Telli, Barcin Ozturk, Nurcan Baykam, Ridvan Karaali, Iftihar Koksal, Yeliz Bilir, Seda Guzeldag, Gulden Ersoz, Guliz Evik, Yasar Bayindir, Yasemin Ersoy, Ari Ercole, Ashok Raj, Artemis Zormpa, George Tinaslanidis, Reena Khade, Ashraf Roshdy, Santhana Kannan, Supriya Antrolikar, Nicholas Marsden, Ben Attwood, Jamie Patel, Mohan Gurjar, Carol Dsilva, Jagadish Chandran, Bashir El Sanousi, Elfayadh Saidahmed, Hytham K S Hamid, Niccolò Buetti, Alexis Tabah, Ambre Loiodice, Stéphane Ruckly, Abdullah Tarik Aslan, Giorgia Montrucchio, Andrea Cortegiani, Nese Saltoglu, Bircan Kayaaslan, Firdevs Aksoy, Akova Murat, Özlem Akdoğan, Kemal Tolga Saracoglu, Cem Erdogan, Marc Leone, Ricard Ferrer, José-Artur Paiva, Yoshiro Hayashi, Mahesh Ramanan, Andrew Conway Morris, François Barbier, Jean-François Timsit, Eurobact 2 study group, Jeffrey Lipman, Edward Litton, Anna Maria Palermo, Timothy Yap, Ege Eroglu, Koji Hosokawa, Hideki Yoshida, Shigeki Fujitani, Farid Zand, Ata Mahmoodpoor, Seyed Mohammad Nasirodin Tabatabaei, Omar Elrabi, Ghaleb A Almekhlafi, Gabriela Vidal, Marta Aparicio, Irene Alonzo, Silvio A Namendys-Silva, Mariana Hermosillo, Roberto Alejandro Castillo, Liesbet De Bus, Jan De Waele, Isabelle Hollevoet, Nicolas De Schryver, Nicolas Serck, Pedja Kovacevic, Biljana Zlojutro, Etienne Ruppe, Philippe Montravers, Thierry Dulac, Jérémy Castanera, Alexandre Massri, Charlotte Guesdon, Pierre Garcon, Matthieu Duprey, François Philippart, Marc Tran, Cédric Bruel, Pierre Kalfon, Gaëtan Badre, Sophie Demeret, Loïc Le Guennec, Matteo Bassetti, Daniele Giacobbe, Gabriele Sales, Ivan Daroui, Giovanni Lodi, Mariachiara Ippolito, Davide Bellina, Andrea Di Guardo, Monica Rocco, Silvia Fiorelli, Adam Mikstacki, Mariusz Peichota, Iwona Pietraszek-Grzywaczewska, Pedro Póvoa, Andriy Krystopchuk, Ana Teresa, António Manuel Pereira de Figueiredo, Isabel Botelho, Vasco Costa, Rui Pedro Cunha, Alexey Gritsan, Vladislav Belskiy, Mikhail Furman, Maria Martinez, Vanessa Casares, Maria Pilar Gracia Arnillas, Rosana Munoz Bermudez, Alejandro Ubeda, Maria Salgado, Emilio Maseda, Alejandro Suarez De La Rica, Miguel Angel Blasco-Navalpotro, Alberto Orejas Gallego, Josef Prazak, J L Pagani, S Abed-Maillard, Arzu Topeli Iskit, Selcuk Mehtap, Solakoğlu Ceyhun, Ayşe Kaya Kalem, Ibrahim Kurt, Murat Telli, Barcin Ozturk, Nurcan Baykam, Ridvan Karaali, Iftihar Koksal, Yeliz Bilir, Seda Guzeldag, Gulden Ersoz, Guliz Evik, Yasar Bayindir, Yasemin Ersoy, Ari Ercole, Ashok Raj, Artemis Zormpa, George Tinaslanidis, Reena Khade, Ashraf Roshdy, Santhana Kannan, Supriya Antrolikar, Nicholas Marsden, Ben Attwood, Jamie Patel, Mohan Gurjar, Carol Dsilva, Jagadish Chandran, Bashir El Sanousi, Elfayadh Saidahmed, Hytham K S Hamid

Abstract

Background: The study aimed to describe the epidemiology and outcomes of hospital-acquired bloodstream infections (HABSIs) between COVID-19 and non-COVID-19 critically ill patients.

Methods: We used data from the Eurobact II study, a prospective observational multicontinental cohort study on HABSI treated in ICU. For the current analysis, we selected centers that included both COVID-19 and non-COVID-19 critically ill patients. We performed descriptive statistics between COVID-19 and non-COVID-19 in terms of patients' characteristics, source of infection and microorganism distribution. We studied the association between COVID-19 status and mortality using multivariable fragility Cox models.

Results: A total of 53 centers from 19 countries over the 5 continents were eligible. Overall, 829 patients (median age 65 years [IQR 55; 74]; male, n = 538 [64.9%]) were treated for a HABSI. Included patients comprised 252 (30.4%) COVID-19 and 577 (69.6%) non-COVID-19 patients. The time interval between hospital admission and HABSI was similar between both groups. Respiratory sources (40.1 vs. 26.0%, p < 0.0001) and primary HABSI (25.4% vs. 17.2%, p = 0.006) were more frequent in COVID-19 patients. COVID-19 patients had more often enterococcal (20.5% vs. 9%) and Acinetobacter spp. (18.8% vs. 13.6%) HABSIs. Bacteremic COVID-19 patients had an increased mortality hazard ratio (HR) versus non-COVID-19 patients (HR 1.91, 95% CI 1.49-2.45).

Conclusions: We showed that the epidemiology of HABSI differed between COVID-19 and non-COVID-19 patients. Enterococcal HABSI predominated in COVID-19 patients. COVID-19 patients with HABSI had elevated risk of mortality. Trial registration ClinicalTrials.org number NCT03937245 . Registered 3 May 2019.

Keywords: Bacteremia; Bloodstream infection; COVID-19; Enterococcus; ICU-acquired.

Conflict of interest statement

The authors have disclosed that they do not have conflict of interest. Dr. Buetti received a grant from the Swiss National Science Foundation (Grant Number: P4P4PM_194449). Prof. Timsit received fees for lectures to 3M, MSD, Pfizer, and BioMérieux; he received research grants from Astellas, 3M, MSD, and Pfizer; and he participated to advisory boards of 3M, MSD, Bayer Pharma, Nabriva, and Pfizer. Dr. Barbier received consulting and lecture fees from MSD and BioMérieux. Prof. Cortegiani received fees for lectures from Gilead, MSD, Pfizer; and he participated to advisory boards of MSD, Gilead, Pfizer. Dr. Montrucchio received fees for lectures from Gilead, Pfizer, Thermofisher; and she participated to advisory boards of Gilead. Dr. Conway Morris sits on the scientific advisory board of Cambridge Infection Diagnostics. Prof. Akova received grants from Pfizer and Gilead, had lecture fees paid to the institution by Pfizer and Sanofi. Dr. Ramanan acknowledges support from the Metro North Hospital and Health Services Clinician-Researcher Fellowship. Dr. Conway Morris sits on the scientific advisory board of Cambridge Infection Diagnostics. Dr. Conway Morris is supported by a Clinician Scientist Fellowship from the Medical Research Council (MR/V006118/1). Prof. José-Artur Paiva received fees for consulting, advisory boards or lectures from MSD, Pfizer, Astra-Zeneca, Gilead, Jansen, Cepheid, AOP Orphan Pharmaceuticals.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart
Fig. 2
Fig. 2
Distribution of microorganisms between COVID-19 and non-COVID-19 patients in all HABSI and in ICU-acquired HABSI. HA-BSI hospital-acquired bloodstream infection, ICU intensive care unit, spp. species
Fig. 3
Fig. 3
Survival curves for all, ICU-acquired, enterococcal and DTR Gram-negative HABSI. ICU intensive care unit, HA-BSI hospital-acquired bloodstream infection, DTR difficult to treat resistance, Vs versus

References

    1. Tabah A, Koulenti D, Laupland K, Misset B, Valles J, Bruzzi de Carvalho F, et al. Characteristics and determinants of outcome of hospital-acquired bloodstream infections in intensive care units: the EUROBACT International Cohort Study. Intensive Care Med. 2012;38(12):1930–1945. doi: 10.1007/s00134-012-2695-9.
    1. Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323(15):1478–1487. doi: 10.1001/jama.2020.2717.
    1. Buetti N, Ruckly S, de Montmollin E, Reignier J, Terzi N, Cohen Y, et al. COVID-19 increased the risk of ICU-acquired bloodstream infections: a case-cohort study from the multicentric OUTCOMEREA network. Intensive Care Med. 2021;47(2):180–187. doi: 10.1007/s00134-021-06346-w.
    1. Langford BJ, So M, Leung V, Raybardhan S, Lo J, Kan T, et al. Predictors and microbiology of respiratory and bloodstream bacterial infection in patients with COVID-19: living rapid review update and meta-regression. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2022;28(4):491–501.
    1. Ippolito M, Simone B, Filisina C, Catalanotto FR, Catalisano G, Marino C, et al. Bloodstream infections in hospitalized patients with COVID-19: a systematic review and meta-analysis. Microorganisms. 2021;9(10):2016. doi: 10.3390/microorganisms9102016.
    1. Damonti L, Kronenberg A, Marschall J, Jent P, Sommerstein R, De Kraker MEA, et al. The effect of the COVID-19 pandemic on the epidemiology of positive blood cultures in Swiss intensive care units: a nationwide surveillance study. Crit Care. 2021;25(1):403. doi: 10.1186/s13054-021-03814-z.
    1. Zhu N, Rawson TM, Mookerjee S, Price JR, Davies F, Otter J, et al. Changing patterns of bloodstream infections in the community and acute care across two COVID-19 epidemic waves: a retrospective analysis using data linkage. Clin Infect Dis Off Publ Infect Dis Soc Am. 2021;75:e1082–e1091. doi: 10.1093/cid/ciab869.
    1. Massart N, Maxime V, Fillatre P, Razazi K, Ferre A, Moine P, et al. Characteristics and prognosis of bloodstream infection in patients with COVID-19 admitted in the ICU: an ancillary study of the COVID-ICU study. Ann Intensive Care. 2021;11(1):183. doi: 10.1186/s13613-021-00971-w.
    1. Tabah A, Buetti N, Staiquly Q, Ruckly S, et al. Epidemiology and determinants of outcome of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study. Intensive Care Med. 2022. (Under review).
    1. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344–349. doi: 10.1016/j.jclinepi.2007.11.008.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–829. doi: 10.1097/00003246-198510000-00009.
    1. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–383. doi: 10.1016/0021-9681(87)90171-8.
    1. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270(24):2957–2963. doi: 10.1001/jama.1993.03510240069035.
    1. Prevention Cfdca. Carbapenem-resistant Enterobacterales (CRE): CRE Technical Information 2019. Available from . 2019.
    1. Kadri SS, Adjemian J, Lai YL, Spaulding AB, Ricotta E, Prevots DR, et al. Difficult-to-treat resistance in Gram-negative Bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis Off Publ Infect Dis Soc Am. 2018;67(12):1803–1814.
    1. Grasselli G, Scaravilli V, Mangioni D, Scudeller L, Alagna L, Bartoletti M, et al. Hospital-acquired infections in critically ill patients with COVID-19. Chest. 2021;160(2):454–465. doi: 10.1016/j.chest.2021.04.002.
    1. Bonazzetti C, Morena V, Giacomelli A, Oreni L, Casalini G, Galimberti LR, et al. Unexpectedly high frequency of enterococcal bloodstream infections in coronavirus disease 2019 patients admitted to an Italian ICU: an observational study. Crit Care Med. 2021;49(1):e31–e40. doi: 10.1097/CCM.0000000000004748.
    1. DeVoe C, Segal MR, Wang L, Stanley K, Madera S, Fan J, et al. Increased rates of secondary bacterial infections, including Enterococcus bacteremia, in patients hospitalized with coronavirus disease 2019 (COVID-19). Infect Control Hosp Epidemiol. 2021;1–8. 10.1017/ice.2021.391. Online ahead of print.
    1. Krawczyk B, Wityk P, Galecka M, Michalik M. The many faces of Enterococcus spp.—commensal, probiotic and opportunistic pathogen. Microorganisms. 2021;9(9):1900. doi: 10.3390/microorganisms9091900.
    1. Kaafarani HMA, El Moheb M, Hwabejire JO, Naar L, Christensen MA, Breen K, et al. Gastrointestinal complications in critically ill patients with COVID-19. Ann Surg. 2020;272(2):e61–e62. doi: 10.1097/SLA.0000000000004004.
    1. Sun JK, Liu Y, Zou L, Zhang WH, Li JJ, Wang Y, et al. Acute gastrointestinal injury in critically ill patients with COVID-19 in Wuhan, China. World J Gastroenterol. 2020;26(39):6087–6097. doi: 10.3748/wjg.v26.i39.6087.
    1. Akkus C, Yilmaz H, Mizrak S, Adibelli Z, Akdas O, Duran C. Development of pancreatic injuries in the course of COVID-19. Acta Gastroenterol Belg. 2020;83(4):585–592.
    1. Rasch S, Herner A, Schmid RM, Huber W, Lahmer T. High lipasemia is frequent in Covid-19 associated acute respiratory distress syndrome. Pancreatology. 2021;21(1):306–311. doi: 10.1016/j.pan.2020.11.023.
    1. El Moheb M, Christensen MA, Naar L, Gaitanidis A, Breen K, Alser O, et al. Comment on "Gastrointestinal complications in critically ill patients with COVID-19": an update. Ann Surg. 2021;274(6):e821–e823. doi: 10.1097/SLA.0000000000004337.
    1. Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69(6):997–1001. doi: 10.1136/gutjnl-2020-321013.
    1. Balaphas A, Gkoufa K, Meyer J, Peloso A, Bornand A, McKee TA, et al. COVID-19 can mimic acute cholecystitis and is associated with the presence of viral RNA in the gallbladder wall. J Hepatol. 2020;73(6):1566–1568. doi: 10.1016/j.jhep.2020.08.020.
    1. Liao Y, Wang B, Wang J, Shu J, Zhou W, Zhang H. SARS-CoV-2 in the bile of a patient with COVID-19-associated gallbladder disease. Endoscopy. 2020;52(12):1148. doi: 10.1055/a-1290-7446.
    1. Schepis T, Larghi A, Papa A, Miele L, Panzuto F, De Biase L, et al. SARS-CoV2 RNA detection in a pancreatic pseudocyst sample. Pancreatology. 2020;20(5):1011–1012. doi: 10.1016/j.pan.2020.05.016.
    1. Zhang H, Li HB, Lyu JR, Lei XM, Li W, Wu G, et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int J Infect Dis. 2020;96:19–24. doi: 10.1016/j.ijid.2020.04.027.
    1. Bilaloglu S, Aphinyanaphongs Y, Jones S, Iturrate E, Hochman J, Berger JS. Thrombosis in hospitalized patients with COVID-19 in a New York City Health System. JAMA. 2020;324(8):799–801. doi: 10.1001/jama.2020.13372.
    1. Hill JB, Garcia D, Crowther M, Savage B, Peress S, Chang K, et al. Frequency of venous thromboembolism in 6513 patients with COVID-19: a retrospective study. Blood Adv. 2020;4(21):5373–5377. doi: 10.1182/bloodadvances.2020003083.
    1. Moll M, Zon RL, Sylvester KW, Chen EC, Cheng V, Connell NT, et al. VTE in ICU patients with COVID-19. Chest. 2020;158(5):2130–2135. doi: 10.1016/j.chest.2020.07.031.
    1. Shepard BD, Gilmore MS. Antibiotic-resistant enterococci: the mechanisms and dynamics of drug introduction and resistance. Microbes Infect. 2002;4(2):215–224. doi: 10.1016/S1286-4579(01)01530-1.
    1. Kristich CJ, Rice LB, Arias CA. Enterococcal infection-treatment and antibiotic resistance. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: from commensals to leading causes of drug resistant infection. Boston: Massachusetts Eye and Ear Infirmary; 2014.
    1. De Angelis G, Cataldo MA, De Waure C, Venturiello S, La Torre G, Cauda R, et al. Infection control and prevention measures to reduce the spread of vancomycin-resistant enterococci in hospitalized patients: a systematic review and meta-analysis. J Antimicrob Chemother. 2014;69(5):1185–1192. doi: 10.1093/jac/dkt525.
    1. O'Toole RF. The interface between COVID-19 and bacterial healthcare-associated infections. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2021;27(12):1772–1776.
    1. Thoma R, Seneghini M, Seiffert SN, Vuichard Gysin D, Scanferla G, Haller S, et al. The challenge of preventing and containing outbreaks of multidrug-resistant organisms and Candida auris during the coronavirus disease 2019 pandemic: report of a carbapenem-resistant Acinetobacter baumannii outbreak and a systematic review of the literature. Antimicrob Resist Infect Control. 2022;11(1):12. doi: 10.1186/s13756-022-01052-8.
    1. Niederman MS, Baron RM, Bouadma L, Calandra T, Daneman N, DeWaele J, et al. Initial antimicrobial management of sepsis. Crit Care. 2021;25(1):307. doi: 10.1186/s13054-021-03736-w.
    1. Morvan AC, Hengy B, Garrouste-Orgeas M, Ruckly S, Forel JM, Argaud L, et al. Impact of species and antibiotic therapy of enterococcal peritonitis on 30-day mortality in critical care-an analysis of the OUTCOMEREA database. Crit Care. 2019;23(1):307. doi: 10.1186/s13054-019-2581-8.
    1. Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Ravaud P, et al. Effect of tocilizumab versus usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med. 2021;181(1):32–40. doi: 10.1001/jamainternmed.2020.6820.
    1. Group WHOREAfC-TW. Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324(13):1330–1341. doi: 10.1001/jama.2020.17023.

Source: PubMed

3
Subscribe