New cardiovascular and pulmonary therapeutic strategies based on the Angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor axis

Anderson J Ferreira, Tatiane M Murça, Rodrigo A Fraga-Silva, Carlos Henrique Castro, Mohan K Raizada, Robson A S Santos, Anderson J Ferreira, Tatiane M Murça, Rodrigo A Fraga-Silva, Carlos Henrique Castro, Mohan K Raizada, Robson A S Santos

Abstract

Angiotensin (Ang)-(1-7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). The discovery of the angiotensin-converting enzyme homologue ACE2 revealed important metabolic pathways involved in the Ang-(1-7) synthesis. This enzyme can form Ang-(1-7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation. Additionally, it is well established that the G protein-coupled receptor Mas is a functional ligand site for Ang-(1-7). The axis formed by ACE2/Ang-(1-7)/Mas represents an endogenous counter regulatory pathway within the RAS whose actions are opposite to the vasoconstrictor/proliferative arm of the RAS constituted by ACE/Ang II/AT(1) receptor. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1-7)/Mas arm in the cardiovascular and pulmonary system. Also, we will highlight the initiatives to develop potential therapeutic strategies based on this axis.

Figures

Figure 1
Figure 1
Schematic representation of the renin-angiotensin system (RAS) cascade. The counterregulatory axes of the RAS are composed by ACE/Ang II/AT1 and ACE2/Ang-(1–7)/Mas. ACE: angiotensin-converting enzyme; Ang: angiotensin; AT1: Ang II type 1 receptor; AT2: Ang II type 2 receptor; Mas: Ang-(1–7) receptor; PCP: prolylcarboxypeptidase; PEP: prolyl-endopeptidase; NEP: neutral-endopeptidase 24.11.
Figure 2
Figure 2
Effects of Ang II and Losartan on arterial blood pressure of rats chronically treated with XNT. The responses to increasing doses of Ang II were similar in vehicle- and XNT-treated (a) normotensive (Wistar-Kyoto rats—WKY) and (b) hypertensive (spontaneously hypertensive rats—SHR) rats. Likewise, the response to Losartan (0.25 mg/kg) was similar in vehicle- and XNT-treated (c) normotensive (WKY) and (d) hypertensive (SHRs) rats. The blood pressure was measured through a catheter inserted into the carotid artery and Ang II and Losartan were administrated in bolus using the jugular vein.
Figure 3
Figure 3
Schematic diagram showing the therapeutic strategies to modulate the activity of the renin-angiotensin system (RAS). In addition to the classical RAS blockers, that is, ACE inhibitors and AT1 receptor blockers, the figure highlights the renin inhibitors, the Ang-(1–7) formulations [HPβCD/Ang-(1-7) and cyclic Ang-(1-7)], the synthetic Mas receptor agonists (AVE 0991 and CGEN-856S), and the ACE2 activator (XNT). ACE: angiotensin-converting enzyme; AT1: Ang II type 1 receptor; AT2: Ang II type 2 receptor; Mas: Ang-(1–7) receptor; NEP: neutral-endopeptidase 24.11.

References

    1. Hall JE, Guyton AC, Mizelle HL. Role of the renin-angiotensin system in control of sodium excretion and arterial pressure. Acta Physiologica Scandinavica, Supplement. 1990;139(591):48–62.
    1. Guyton AC. Kidneys and fluids in pressure regulation: small volume but large pressure changes. Hypertension. 1992;19(1):I2–I8.
    1. Santos RAS, Campagnole-Santos MJ, Andrade SP. Angiotensin-(1–7): an update. Regulatory Peptides. 2000;91(1–3):45–62.
    1. Marshall RP. The pulmonary renin-angiotensin system. Current Pharmaceutical Design. 2003;9(9):715–722.
    1. Ferrario CM, Strawn WB. Role of the renin-angiotensin-aldosterone system and proinflammatory mediators in cardiovascular disease. The American Journal of Cardiology. 2006;98(1):121–128.
    1. Kokubu T, Ueda E, Joh T, Nishimura K. Purification and properties of angiotensin I-converting enzyme in human lung and its role on the metabolism of vasoactive peptides in pulmonary circulation. Advances in Experimental Medicine and Biology B. 1979;120:467–475.
    1. Inagami T. A memorial to Robert Tiegerstedt: the centennial of renin discovery. Hypertension. 1998;32(6):953–957.
    1. Touyz RM, Berry C. Recent advances in angiotensin II signaling. Brazilian Journal of Medical and Biological Research. 2002;35(9):1001–1015.
    1. Matsusaka T, Ichikawa I. Biological functions of angiotensin and its receptors. Annual Review of Physiology. 1997;59:395–412.
    1. Allen AM, Zhuo J, Mendelsohn FAO. Localization and function of angiotensin AT1 receptors. American Journal of Hypertension. 2000;13(1):31S–38S.
    1. Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacological Reviews. 2000;52(1):11–34.
    1. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. American Journal of Physiology—Cell Physiology. 2007;292(1):C82–C97.
    1. Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau VJ. Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. Journal of Biological Chemistry. 1997;272(30):19022–19026.
    1. Touyz RM, Endemann D, He G, Li JS, Schiffrin EL. Role of AT2 receptors in angiotensin II-stimulated contraction of small mesenteric arteries in young SHR. Hypertension. 1999;33(1):366–372.
    1. le Tran Y, Forster C. Angiotensin-(1–7) and the rat aorta: modulation by the endothelium. Journal of Cardiovascular Pharmacology. 1997;30(5):676–682.
    1. Santos RAS, Simoes e Silva AC, Maric C, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(14):8258–8263.
    1. Santos RAS, Ferreira AJ, Nadu AP, et al. Expression of an angiotensin-(1–7)-producing fusion protein produces cardioprotective effects in rats. Physiological Genomics. 2004;17:292–299.
    1. Grobe JL, Mecca AP, Lingis M, et al. Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7) American Journal of Physiology—Heart and Circulatory Physiology. 2007;292(2):H736–H742.
    1. Mercure C, Yogi A, Callera GE, et al. Angiotensin(1–7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circulation Research. 2008;103(11):1319–1326.
    1. Nadu AP, Ferreira AJ, Reudelhuber TL, Bader M, Santos RAS. Reduced isoproterenol-induced renin-angiotensin changes and extracellular matrix deposition in hearts of TGR(A1–7)3292 rats. Journal of the American Society of Hypertension. 2008;2(5):341–348.
    1. Ferreira AJ, Castro CH, Guatimosim S, et al. Attenuation of isoproterenol-induced cardiac fibrosis in transgenic rats harboring an angiotensin-(1–7)-producing fusion protein in the heart. Therapeutic Advances in Cardiovascular Disease. 2010;4(2):83–96.
    1. Santiago NM, Guimarães PS, Sirvente RA, et al. Lifetime overproduction of circulating angiotensin-(1–7) attenuates deoxycorticosterone acetate-salt hypertension-induced cardiac dysfunction and remodeling. Hypertension. 2010;55(4):889–896.
    1. Savergnini SQ, Beiman M, Lautner RQ, et al. Vascular relaxation, antihypertensive effect, and cardioprotection of a novel peptide agonist of the Mas receptor. Hypertension. 2010;56(1):112–120.
    1. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. Journal of Biological Chemistry. 2002;277(17):14838–14843.
    1. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase. Journal of Biological Chemistry. 2000;275(43):33238–33243.
    1. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circulation Research. 2000;87(5):E1–E9.
    1. Ferrario CM. The renin-angiotensin system: importance in physiology and pathology. Journal of Cardiovascular Pharmacology. 1990;15, supplement 3:S1–S5.
    1. Cargill RI, Lipworth BJ. Lisinopril attenuates acute hypoxic pulmonary vasoconstriction in humans. Chest. 1996;109(2):424–429.
    1. Nicholls MG, Richards AM, Agarwal M. The importance of the renin-angiotensin system in cardiovascular disease. Journal of Human Hypertension. 1998;12(5):295–299.
    1. Marshall RP, McAnulty RJ, Laurent GJ. Angiotensin II is mitogenic for human lung fibroblasts via activation of the type 1 receptor. American Journal of Respiratory and Critical Care Medicine. 2000;161(6):1999–2004.
    1. Orfanos SE, Armaganidis A, Glynos C, et al. Pulmonary capillary endothelium-bound angiotensin-converting enzyme activity in acute lung injury. Circulation. 2000;102(16):2011–2018.
    1. Fleming I, Kohlstedt K, Busse R. The tissue renin-angiotensin system and intracellular signalling. Current Opinion in Nephrology and Hypertension. 2006;15(1):8–13.
    1. Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. The American Journal of Medicine. 2002;113(5):409–418.
    1. Ma TKW, Kam KKH, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. British Journal of Pharmacology. 2010;160(6):1273–1292.
    1. Vijayaraghavan K, Deedwania P. Renin-angiotensin-aldosterone blockade for cardiovascular disease prevention. Cardiology Clinics. 2011;29(1):137–156.
    1. Fourrier F, Chopin C, Wallaert B, et al. Compared evolution of plasma fibronectin and angiotensin-converting enzyme levels in septic ARDS. Chest. 1985;87(2):191–195.
    1. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116.
    1. Petty WJ, Miller AA, McCoy TP, Gallagher PE, Tallant EA, Torti FM. Phase I and pharmacokinetic study of angiotensin-(1–7), an endogenous antiangiogenic hormone. Clinical Cancer Research. 2009;15(23):7398–7404.
    1. Shenoy V, Ferreira AJ, Fraga-Silva RA, et al. The angiotensin-converting enzyme 2/angiogenesis-(1–7)/Mas axis confers cardiopulmonary protection against lung fibrosis and pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine. 2010;182(8):1065–1072.
    1. Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1–7/Mas axis. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2011;301(3):L269–L274.
    1. Chappell MC, Pirro NT, Sykes A, Ferrario CM. Metabolism of angiotensin-(1–7) by angiotensin-converting enzyme. Hypertension. 1998;31(1):362–367.
    1. Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1–7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system. Hypertension. 1998;31(1):356–361.
    1. Davie AP, McMurray JJV. Effect of angiotensin-(1–7) and bradykinin in patients with heart failure treated with an ACE inhibitor. Hypertension. 1999;34(3):457–460.
    1. Britto RR, Santos RAS, Fagundes-Moura CR, Khosla MC, Campagnole-Santos MJ. Role of angiotensin-(1–7) in the modulation of the baroreflex in renovascular hypertensive rats. Hypertension. 1997;30(3):549–556.
    1. Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. Trends in Cardiovascular Medicine. 2003;13(3):93–101.
    1. Guy JL, Lambert DW, Turner AJ, Porter KE. Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts. Experimental Physiology. 2008;93(5):579–588.
    1. Gallagher PE, Ferrario CM, Tallant EA. Regulation of ACE2 in cardiac myocytes and fibroblasts. American Journal of Physiology—Heart and Circulatory Physiology. 2008;295(6):H2373–H2379.
    1. Ferreira AJ, Shenoy V, Qi Y, et al. Angiotensin-converting enzyme 2 activation protects against hypertension-induced cardiac fibrosis involving extracellular signal-regulated kinases. Experimental Physiology. 2011;96(3):287–294.
    1. Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–2610.
    1. Keidar S, Gamliel-Lazarovich A, Kaplan M, et al. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circulation Research. 2005;97(9):946–953.
    1. Kaiqiang Ji, Minakawa M, Fukui K, Suzuki Y, Fukuda I. Olmesartan improves left ventricular function in pressure-overload hypertrophied rat heart by blocking angiotensin II receptor with synergic effects of upregulation of angiotensin converting enzyme 2. Therapeutic Advances in Cardiovascular Disease. 2009;3(2):103–111.
    1. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828.
    1. Gurley SB, Allred A, Le TH, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. Journal of Clinical Investigation. 2006;116(8):2218–2225.
    1. Yamamoto K, Ohishi M, Katsuya T, et al. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47(4):718–726.
    1. Trask AJ, Averill DB, Ganten D, Chappell MC, Ferrario CM. Primary role of angiotensin-converting enzyme-2 in cardiac production of angiotensin-(1–7) in transgenic Ren-2 hypertensive rats. American Journal of Physiology—Heart and Circulatory Physiology. 2007;292(6):H3019–H3024.
    1. Kassiri Z, Zhong J, Guo D, et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circulation: Heart Failure. 2009;2(5):446–455.
    1. Zhong J, Guo D, Chen CB, et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57:314–322.
    1. Trask AJ, Groban L, Westwood BM, et al. Inhibition of angiotensin-converting enzyme 2 exacerbates cardiac hypertrophy and fibrosis in ren-2 hypertensive rats. American Journal of Hypertension. 2010;23(6):687–693.
    1. Huentelman MJ, Grobe JL, Vazquez J, et al. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Experimental Physiology. 2005;90(5):783–790.
    1. Díez-Freire C, Vázquez J, Correa de Adjounian MF, et al. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiological Genomics. 2006;27(1):12–19.
    1. Der Sarkissian S, Grobe JL, Yuan L, et al. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension. 2008;51(3):712–718.
    1. Zhao YX, Yin HQ, Yu QT, et al. ACE2 overexpression ameliorates left ventricular remodeling and dysfunction in a rat model of myocardial infarction. Human Gene Therapy. 2010;21(11):1545–1554.
    1. Santos RAS, Brosnihan KB, Chappell MC, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11(2):I153–I157.
    1. Schiavone MT, Santos RAS, Brosnihan KB, Khosla MC, Ferrario CM. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1–7) heptapeptide. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(11):4095–4098.
    1. Averill DB, Ishiyama Y, Chappell MC, Ferrario CM. Cardiac angiotensin-(1–7) in ischemic cardiomyopathy. Circulation. 2003;108(17):2141–2146.
    1. Santos RAS, Castro CH, Gava E, et al. Impairment of in vitro and in vivo heart function in angiotensin-(1–7) receptor Mas knockout mice. Hypertension. 2006;47(5):996–1002.
    1. Santos RAS, Brosnihan KB, Jacobsen DW, DiCorleto PE, Ferrario CM. Production of angiotensin-(1–7) by human vascular endothelium. Hypertension. 1992;19(2):II56–II61.
    1. Ferreira AJ, Santos RA, Almeida AP. Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension. 2001;38(3):665–668.
    1. Ferreira AJ, Moraes PL, Foureaux G, Andrade AB, Santos RAS, Almeida AP. The angiotensin-(1–7)/Mas receptor axis is expressed in sinoatrial node cells of rats. Journal of Histochemistry and Cytochemistry. 2011;59(8):761–768.
    1. Liu E, Xu Z, Li J, Yang S, Yang W, Li G. Enalapril, irbesartan, and angiotensin-(1–7) prevent atrial tachycardia-induced ionic remodeling. International Journal of Cardiology. 2011;146(3):364–370.
    1. Loot AE, Roks AJM, Henning RH, et al. Angiotensin-(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation. 2002;105(13):1548–1550.
    1. Ferreira AJ, Santos RAS, Almeida AP. Angiotensin-(1–7) improves the post-ischemic function in isolated perfused rat hearts. Brazilian Journal of Medical and Biological Research. 2002;35(9):1083–1090.
    1. Castro CH, Santos RAS, Ferreira AJ, Bader M, Alenina N, Almeida AP. Effects of genetic deletion of angiotensin-(1–7) receptor Mas on cardiac function during ischemia/reperfusion in the isolated perfused mouse heart. Life Sciences. 2006;80(3):264–268.
    1. Pan CH, Wen CH, Lin CS. Interplay of angiotensin II and angiotensin(1–7) in the regulation of matrix metalloproteinases of human cardiocytes. Experimental Physiology. 2008;93(5):599–612.
    1. Pei Z, Meng R, Li G, et al. Angiotensin-(1–7) ameliorates myocardial remodeling and interstitial fibrosis in spontaneous hypertension: role of MMPs/TIMPs. Toxicology Letters. 2010;199(2):173–181.
    1. Dias-Peixoto MF, Santos RAS, Gomes ERM, et al. Molecular mechanisms involved in the angiotensin-(1–7)/Mas signaling pathway in cardiomyocytes. Hypertension. 2008;52(3):542–548.
    1. Gomes ERM, Lara AA, Almeida PWM, et al. Angiotensin-(1–7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3′,5′-cyclic monophosphate-dependent pathway. Hypertension. 2010;55(1):153–160.
    1. Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the Mas receptor. American Journal of Physiology—Heart and Circulatory Physiology. 2005;289(4):H1560–H1566.
    1. Giani JF, Gironacci MM, Muñoz MC, Turyn D, Dominici FP. Angiotensin-(1–7) has a dual role on growth-promoting signalling pathways in rat heart in vivo by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity. Experimental Physiology. 2008;93(5):570–578.
    1. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system. Trends in Endocrinology and Metabolism. 2004;15(4):166–169.
    1. Sampaio WO, Santos RAS, Faria-Silva R, Da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185–192.
    1. Santos RAS, Ferreira AJ, Pinheiro SVB, Sampaio WO, Touyz R, Campagnole-Santos MJ. Angiotensin-(1–7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opinion on Investigational Drugs. 2005;14(8):1019–1031.
    1. Xu P, Costa-Goncalves AC, Todiras M, et al. Endothelial dysfunction and elevated blood pressure in Mas gene-deleted mice. Hypertension. 2008;51(2):574–580.
    1. Rabelo LA, Alenina N, Bader M. ACE2-angiotensin-(1–7)-Mas axis and oxidative stress in cardiovascular disease. Hypertension Research. 2011;34(2):154–160.
    1. Tallant EA, Clark MA. Molecular mechanisms of inhibition of vascular growth by angiotensin-(1–7) Hypertension. 2003;42(4):574–579.
    1. Ferreira AJ, Santos RAS, Bradford CN, et al. Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases. Hypertension. 2010;55(2):207–213.
    1. Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3):523–528.
    1. Porsti I, Bara AT, Busse R, Hecker M. Release of nitric oxide by angiotensin-(1–7) from porcine coronary endothelium: implications for a novel angiotensin receptor. British Journal of Pharmacology. 1994;111(3):652–654.
    1. Feterik K, Smith L, Katusic ZS. Angiotensin-(1–7) causes endothelium-dependent relaxation in canine middle cerebral artery. Brain Research. 2000;873(1):75–82.
    1. Meng W, Busija DW. Comparative effects of angiotensin-(1–7) and angiotensin II on piglet pial arterioles. Stroke. 1993;24(12):2041–2045.
    1. Osei SY, Ahima RS, Minkes RK, Weaver JP, Khosla MC, Kadowitz PJ. Differential responses to angiotensin-(1–7) in the feline mesenteric and hindquarters vascular beds. European Journal of Pharmacology. 1993;234(1):35–42.
    1. Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension. 2002;39(3):799–802.
    1. Oliveira MA, Fortes ZB, Santos RAS, Kosla MC, de Carvalho MHC. Synergistic effect of angiotensin-(1–7) on bradykinin arteriolar dilation in vivo. Peptides. 1999;20(10):1195–1201.
    1. Fernandes L, Fortes ZB, Nigro D, Tostes RCA, Santos RAS, Catelli de Carvalho MH. Potentiation of bradykinin by angiotensin-(1–7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension. 2001;37(2):703–709.
    1. Sasaki S, Higashi Y, Nakagawa K, Matsuura H, Kajiyama G, Oshima T. Effects of angiotensin-(1–7) on forearm circulation in normotensive subjects and patients with essential hypertension. Hypertension. 2001;38(1):90–94.
    1. Bayorh MA, Eatman D, Walton M, Socci RR, Thierry-Palmer M, Emmett N. 1A-779 attenuates angiotensin-(1–7) depressor response in salt-induced hypertensive rats. Peptides. 2002;23(1):57–64.
    1. Li P, Chappell MC, Ferrario CM, Brosnihan KB. Angiotensin-(1–7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension. 1997;29(1):394–400.
    1. Walters PE, Gaspari TA, Widdop RE. Angiotensin-(1–7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension. 2005;45(5):960–966.
    1. Silva DMR, Vianna HR, Cortes SF, Campagnole-Santos MJ, Santos RAS, Lemos VS. Evidence for a new angiotensin-(1–7) receptor subtype in the aorta of Sprague-Dawley rats. Peptides. 2007;28(3):702–707.
    1. Muthalif MM, Benter IF, Uddin MR, Harper JL, Malik KU. Signal transduction mechanisms involved in angiotensin-(1–7)-stimulated arachidonic acid release and prostanoid synthesis in rabbit aortic smooth muscle cells. Journal of Pharmacology and Experimental Therapeutics. 1998;284(1):388–398.
    1. Pinheiro SVB, Simões e Silva AC, Sampaio WO, et al. Nonpeptide AVE 0991 is an angiotensin-(1–7) receptor Mas agonist in the mouse kidney. Hypertension. 2004;44(4):490–496.
    1. Faria-Silva R, Duarte FV, Santos RA. Short-term angiotensin(1–7) receptor Mas stimulation improves endothelial function in normotensive rats. Hypertension. 2005;46(4):948–952.
    1. Roks AJM, Van Geel PP, Pinto YM, et al. Angiotensin-(1–7) is a modulator of the human renin-angiotensin system. Hypertension. 1999;34(2):296–301.
    1. Zhong J, Zhu ZM, Yang YJ. Inhibition of PKC and ERK1/2 in cultured rat vascular smooth muscle cells by angiotensin-(1–7) Acta Physiologica Sinica. 2001;53(5):361–363.
    1. Hayashi N, Yamamoto K, Ohishi M, et al. The counterregulating role of ACE2 and ACE2-mediated angiotensin 1–7 signaling against angiotensin II stimulation in vascular cells. Hypertension Research. 2010;33(11):1182–1185.
    1. Zhang J, Noble NA, Border WA, Huang Y. Infusion of angiotensin-(1–7) reduces glomerulosclerosis through counteracting angiotensin II in experimental glomerulonephritis. American Journal of Physiology—Renal Physiology. 2010;298(3):F579–F588.
    1. Carvalho MBL, Duarte FV, Faria-Silva R, et al. Evidence for Mas-mediated bradykinin potentiation by the angiotensin-(1–7) nonpeptide mimic AVE 0991 in normotensive rats. Hypertension. 2007;50(4):762–767.
    1. Ueda S, Masumori-Maemoto S, Wada A, Ishii M, Brosnihan KB, Umemura S. Angiotensin(1–7) potentiates bradykinin-induced vasodilatation in man. Journal of Hypertension. 2001;19(11):2001–2009.
    1. Lima CV, Paula RD, Resende FL, Khosla MC, Santos RAS. Potentiation of the hypotensive effect of bradykinin by short-term infusion of angiotensin-(1–7) in normotensive and hypertensive rats. Hypertension. 1997;30(3):542–548.
    1. Almeida AP, Frábregas BC, Madureira MM, Santos RJS, Campagnole-Santos MJ, Santos RAS. Angiotensin-(1–7) potentiates the coronary vasodilatatory effect of bradykinin in the isolated rat heart. Brazilian Journal of Medical and Biological Research. 2000;33(6):709–713.
    1. Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. American Journal of Physiology—Heart and Circulatory Physiology. 2008;295(4):H1377–H1384.
    1. Rentzsch B, Todiras M, Iliescu R, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52(5):967–973.
    1. Hernández Prada JA, Ferreira AJ, Katovich MJ, et al. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension. 2008;51(5):1312–1317.
    1. Ikram H, Maslowski AH, Nicholls MG. Haemodynamic and hormonal effects of captopril in primary pulmonary hypertension. British Heart Journal. 1982;48(6):541–545.
    1. Ghazi-Khansari M, Mohammadi-Karakani A, Sotoudeh M, Mokhtary P, Pour-Esmaeil E, Maghsoud S. Antifibrotic effect of captopril and enalapril on paraquat-induced lung fibrosis in rats. Journal of Applied Toxicology. 2007;27(4):342–349.
    1. Li X, Molina-Molina M, Abdul-Hafez A, Uhal V, Xaubet A, Uhal BD. Angiotensin converting enzyme-2 is protective but downregulated in human and experimental lung fibrosis. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2008;295(1):L178–L185.
    1. Ferreira AJ, Shenoy V, Yamazato Y, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine. 2009;179(11):1048–1054.
    1. Yamazato Y, Ferreira AJ, Hong K-H, et al. Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension. 2009;54(2):365–371.
    1. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology. 2004;203(2):631–637.
    1. Baginski L, Tachon G, Falson F, Patton JS, Bakowsky U, Ehrhardt C. Reverse Transcription Polymerase Chain Reaction (RT-PCR) analysis of proteolytic enzymes in cultures of human respiratory epithelial cells. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2011;24(2):89–101.
    1. Treml B, Neu N, Kleinsasser A, et al. Recombinant angiotensin-converting enzyme 2 improves pulmonary blood flow and oxygenation in lipopolysaccharide-induced lung injury in piglets. Critical Care Medicine. 2010;38(2):596–601.
    1. Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1–7/ Mas axis. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2011;301(3):L269–L274.
    1. Feng Y, Wan H, Liu J, et al. The angiotensin-converting enzyme 2 in tumor growth and tumor-associated angiogenesis in non-small cell lung cancer. Oncology Reports. 2010;23(4):941–948.
    1. Feng Y, Ni L, Wan H, et al. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncology Reports. 2011;26(5):1157–1164.
    1. Gallagher PE, Tallant EA. Inhibition of human lung cancer cell growth by angiotensin-(1–7) Carcinogenesis. 2004;25(11):2045–2052.
    1. Menon J, Soto-Pantoja DR, Callahan MF, et al. Angiotensin-(1–7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Research. 2007;67(6):2809–2815.
    1. Soto-Pantoja DR, Menon J, Gallagher PE, Tallant EA. Angiotensin-(1–7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Molecular Cancer Therapeutics. 2009;8(6):1676–1683.
    1. Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. The American Journal of Cardiology. 2002;89(2):3A–9A.
    1. Kucharewicz I, Pawlak R, Matys T, Pawlak D, Buczko W. Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1–7) Hypertension. 2002;40(5):774–779.
    1. Iyer SN, Chappell MC, Averill DB, Diz DI, Ferrario CM. Vasodepressor actions of angiotensin-(1–7) unmasked during combined treatment with lisinopril and losartan. Hypertension. 1998;31(2):699–705.
    1. Collister JP, Hendel MD. The role of Ang (1–7) in mediating the chronic hypotensive effects of losartan in normal rats. Journal of the Renin-Angiotensin-Aldosterone System. 2003;4(3):176–179.
    1. Yamada K, Iyer SN, Chappell MC, Ganten D, Ferrario CM. Converting enzyme determines plasma clearance of angiotensin-(1–7) Hypertension. 1998;32(3):496–502.
    1. Lula I, Denadai ÂL, Resende JM, et al. Study of angiotensin-(1–7) vasoactive peptide and its β-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. Peptides. 2007;28(11):2199–2210.
    1. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chemical and Pharmaceutical Bulletin. 2004;52(8):900–915.
    1. Fraga-Silva RA, Costa-Fraga FP, Alenina N, et al. An orally active formulation of angiotensin-(1–7) produces an antithrombotic effect. Clinics. 2011;66(5):837–841.
    1. Marques FD, Ferreira AJ, Sinisterra R, et al. An oral formulation of angiotensin-(1–7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension. 2011;57(3):477–483.
    1. Silva-Barcellos NM, Caligiorne S, Santos RAS, Frézard F. Site-specific microinjection of liposomes into the brain for local infusion of a short-lived peptide. Journal of Controlled Release. 2004;95(2):301–307.
    1. Silva-Barcellos NM, Frézard F, Caligiorne S, Santos RAS. Long-lasting cardiovascular effects of liposome-entrapped angiotensin-(1–7) at the rostral ventrolateral medulla. Hypertension. 2001;38(6):1266–1271.
    1. Kluskens LD, Nelemans SA, Rink R, et al. Angiotensin-(1–7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1–7) analog. Journal of Pharmacology and Experimental Therapeutics. 2009;328(3):849–855.
    1. Lemos VS, Silva DMR, Walther T, Alenina N, Bader M, Santos RAS. The endothelium-dependent vasodilator effect of the nonpeptide Ang(1–7) mimic AVE 0991 is abolished in the aorta of Mas-knockout mice. Journal of Cardiovascular Pharmacology. 2005;46(3):274–279.
    1. Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1–7) on the endothelium. Hypertension. 2002;40(6):847–852.
    1. Ferreira AJ, Jacoby BA, Araújo CAA, et al. The nonpeptide angiotensin-(1–7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. American Journal of Physiology—Heart and Circulatory Physiology. 2007;292(2):H1113–H1119.
    1. Ferreira AJ, Oliveira TL, Castro MCM, et al. Isoproterenol-induced impairment of heart function and remodeling are attenuated by the nonpeptide angiotensin-(1–7) analogue AVE 0991. Life Sciences. 2007;81(11):916–923.
    1. Shemesh R, Toporik A, Levine Z, et al. Discovery and validation of novel peptide agonists for G-protein-coupled receptors. Journal of Biological Chemistry. 2008;283(50):34643–34649.
    1. Fraga-Silva RA, Sorg BS, Wankhede M, et al. ACE2 activation promotes antithrombotic activity. Molecular Medicine. 2010;16(5-6):210–215.

Source: PubMed

3
Subscribe