Decreased haemoglobin levels are associated with lower muscle mass and strength in kidney transplant recipients

Joanna Sophia J Vinke, Hanneke J C M Wouters, Suzanne P Stam, Rianne M Douwes, Adrian Post, Antonio W Gomes-Neto, Melanie M van der Klauw, Stefan P Berger, Stephan J L Bakker, TransplantLines Investigators, Martin H De Borst, Michele F Eisenga, C Annema, S J L Bakker, S P Berger, H Blokzijl, F A J A Bodewes, M T de Boer, K Damman, M H De Borst, A Diepstra, G Dijkstra, R M Douwes, M F Eisenga, M E Erasmus, C T Gan, A W Gomes-Neto, E Hak, B G Hepkema, F Klont, T J Knobbe, D Kremer, H G D Leuvenink, W S Lexmond, V E de Meijer, H G M Niesters, L J van Pelt, R A Pol, R J Porte, A V Ranchor, J S F Sanders, J C Schutten, M J Siebelink, R H J A Slart, J C Swarte, D J Touw, M C van den Heuvel, C van Leer-Buter, M van Londen, E A M Verschuuren, M J Vos, R K Weersma, Joanna Sophia J Vinke, Hanneke J C M Wouters, Suzanne P Stam, Rianne M Douwes, Adrian Post, Antonio W Gomes-Neto, Melanie M van der Klauw, Stefan P Berger, Stephan J L Bakker, TransplantLines Investigators, Martin H De Borst, Michele F Eisenga, C Annema, S J L Bakker, S P Berger, H Blokzijl, F A J A Bodewes, M T de Boer, K Damman, M H De Borst, A Diepstra, G Dijkstra, R M Douwes, M F Eisenga, M E Erasmus, C T Gan, A W Gomes-Neto, E Hak, B G Hepkema, F Klont, T J Knobbe, D Kremer, H G D Leuvenink, W S Lexmond, V E de Meijer, H G M Niesters, L J van Pelt, R A Pol, R J Porte, A V Ranchor, J S F Sanders, J C Schutten, M J Siebelink, R H J A Slart, J C Swarte, D J Touw, M C van den Heuvel, C van Leer-Buter, M van Londen, E A M Verschuuren, M J Vos, R K Weersma

Abstract

Background: Post-transplant anaemia and reduced muscle mass and strength are highly prevalent in kidney transplant recipients (KTRs). Decreased haemoglobin levels, a marker of anaemia, could adversely affect muscle mass and strength through multiple mechanisms, among others, through diminished tissue oxygenation. We aimed to investigate the association between haemoglobin levels with muscle mass and strength in KTRs.

Methods: We included stable KTRs from the TransplantLines Biobank and Cohort study with a functional graft ≥1 year post-transplantation. Muscle mass was assessed using 24 h urinary creatinine excretion rate (CER) and bioelectrical impedance analysis (BIA). Muscle strength was assessed with a handgrip strength test using a dynamometer and, in a subgroup (n = 290), with the five-times sit-to-stand (FTSTS) test. We used multivariable linear and logistic regression analyses to investigate the associations of haemoglobin levels with muscle mass and strength.

Results: In 871 included KTRs [median age 58 (interquartile range (IQR), 48-66)] years; 60% men; eGFR 51 ± 18 mL/min/1.73 m2 ) who were 3.5 (1.0-10.2) years post-transplantation, the mean serum haemoglobin level was 13.9 ± 1.8 g/dL in men and 12.8 ± 1.5 g/dL in women. Lower haemoglobin levels were independently associated with a lower CER (std. β = 0.07, P = 0.01), BIA-derived skeletal muscle mass (std. β = 0.22, P < 0.001), handgrip strength (std. β = 0.15, P < 0.001), and worse FTSTS test scores (std. β = -0.17, P = 0.02). KTRs in the lowest age-specific and sex-specific quartile of haemoglobin levels had an increased risk of being in the worst age-specific and sex-specific quartile of CER (fully adjusted OR, 2.09; 95% CI 1.15-3.77; P = 0.02), handgrip strength (fully adjusted OR, 3.30; 95% CI 1.95-5.59; P < 0.001), and FTSTS test score (fully adjusted OR, 7.21; 95% CI 2.59-20.05; P < 0.001).

Conclusions: Low haemoglobin levels are strongly associated with decreased muscle mass and strength in KTRs. Future investigation will need to investigate whether maintaining higher haemoglobin levels may improve muscle mass and strength in KTRs.

Trial registration: ClinicalTrials.gov NCT03272841.

Keywords: 24 h urinary creatinine excretion; Haemoglobin levels; Handgrip strength; Kidney transplant recipients.

Conflict of interest statement

The authors declare no conflict of interest.

© 2022 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of Society on Sarcopenia, Cachexia and Wasting Disorders.

Figures

Figure 1
Figure 1
Haemoglobin levels and measurements of muscle mass and strength. The correlation and Spearman's rank correlation coefficient between haemoglobin levels and creatinine excretion rate (CER) (A), appendicular skeletal muscle mass (ASMM) (B), handgrip strength (C), and five times sit to stand test score (FTSTS) (D). The grey area represents the 95% confidence interval of the regression line. Data on CER available in 871 KTRs, data on ASMM available in 814 KTRs, data on handgrip strength available in 854 KTRs, and data on FTSTS available in 290 KTRs.

References

    1. Riess KJ, Gourishankar S, Oreopoulos A, Jones LW, McGavock JM, Lewanczuk RZ, et al. Impaired arterial compliance and aerobic endurance in kidney transplant recipients. Transplantation 2006;82:920–923.
    1. Stam SP, Eisenga MF, Gomes‐Neto AW, van Londen M, de Meijer VE, van Beek AP, et al. Muscle mass determined from urinary creatinine excretion rate, and muscle performance in renal transplant recipients. J Cachexia Sarcopenia Muscle 2019;3:621–629.
    1. Oterdoom LH, van Ree RM, de Vries AP, Gansevoort RT, Schouten JP, van Son WJ, et al. Urinary creatinine excretion reflecting muscle mass is a predictor of mortality and graft loss in renal transplant recipients. Transplantation 2008;86:391–398.
    1. Zelle DM, Corpeleijn E, Stolk RP, de Greef MH, Gans RO, van der Heide JJ, et al. Low physical activity and risk of cardiovascular and all‐cause mortality in renal transplant recipients. Clin J Am Soc Nephrol 2011;4:898–905.
    1. Chan W, Chin SH, Whittaker AC, Jones D, Kaur O, Bosch JA, et al. The associations of muscle strength, muscle mass, and adiposity with clinical outcomes and quality of life in prevalent kidney transplant recipients. J Ren Nutr 2019;6:536–547.
    1. Zelle DM, Klaassen G, van Adrichem E, Bakker SJ, Corpeleijn E, Navis G. Physical inactivity: a risk factor and target for intervention in renal care. Nat Rev Nephrol 2017;3:152–168.
    1. Wouters HJCM, Stam SP, van der Klauw MM, Bakker SJL, Eisenga MF. The association between haemoglobin concentrations and muscle mass determined from urinary creatinine excretion rate: a population‐based cohort study. Br J Haematol 2020;6:e349–e352.
    1. Yorgin PD, Scandling JD, Belson A, Sanchez J, Alexander SR, Andreoni KA. Late post‐transplant anemia in adult renal transplant recipients. An under‐recognized problem? Am J Transplant 2002;5:429–435.
    1. Vanrenterghem Y, Ponticelli C, Morales JM, Abramowicz D, Baboolal K, Eklund B, et al. Prevalence and management of anemia in renal transplant recipients: a European survey. Am J Transplant 2003;7:835–845.
    1. Winkelmayer WC, Chandraker A. Pottransplantation anemia: management and rationale. Clin J Am Soc Nephrol 2008;3:S49–S55.
    1. Vinke JSJ, Francke MI, Eisenga MF, Hesselink DA, de Borst MH. Iron deficiency after kidney transplantation. Nephrol Dial Transplant 2020;36:gfaa123, 10.1093/ndt/gfaa123
    1. Winkelmayer WC, Chandraker A, Alan Brookhart M, Kramar R, Sunder‐Plassmann G. A prospective study of anaemia and long‐term outcomes in kidney transplant recipients. Nephrol Dial Transplant 2006;12:3559–3566.
    1. Molnar MZ, Czira M, Ambrus C, Szeifert L, Szentkiralyi A, Beko G, et al. Anemia is associated with mortality in kidney‐transplanted patients—a prospective cohort study. Am J Transplant 2007;4:818–824.
    1. Schechter A, Gafter‐Gvili A, Shepshelovich D, Rahamimov R, Gafter U, Mor E, et al. Post renal transplant anemia: severity, causes and their association with graft and patient survival. BMC Nephrol 2019;20:51.
    1. Ichimaru N, Obi Y, Nakazawa S, Yamanaka K, Kakuta Y, Abe T, et al. Post‐transplant anemia has strong influences on renal and patient outcomes in living kidney transplant patients. Transplant Proc 2016;3:878–883.
    1. Moon JH, Kong MH, Kim HJ. Relationship between low muscle mass and anemia in Korean elderly men: using the Korea National Health and Nutrition Examination Survey (KNHANES IV‐V). J Clin Gerontol Geriatr 2015;6:115–119.
    1. Odden MC, Whooley MA, Shlipak MG. Association of chronic kidney disease and anemia with physical capacity: the heart and soul study. J Am Soc Nephrol 2004;11:2908–2915.
    1. Eisenga MF, Gomes‐Neto AW, van Londen M, Ziengs AL, Douwes RM, Stam SP, et al. Rationale and design of TransplantLines: a prospective cohort study and biobank of solid organ transplant recipients. BMJ Open 2018;8:e024502, 10.1136/bmjopen-2018-024502
    1. Eisenga MF, Minović I, Berger SP, Kootstra‐Ros JE, van den Berg E, Riphagen IJ, et al. Iron deficiency, anemia, and mortality in renal transplant recipients. Transpl Int 2016;11:1176–1183.
    1. Maroni BJ, Steinman TI, Mitch WE. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 1985;27:58–65.
    1. Kieneker LM, Gansevoort RT, Mukamal KJ, de Boer RA, Navis G, Bakker SJ, et al. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end‐stage disease study. Hypertension 2014;64:769–776.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–612.
    1. Kyle UG, Genton L, Hans D, Pichard C. Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin Nutr 2003;6:537–543.
    1. Rubin DB. An overview of multiple imputation. Proc Surv Res methods Sect Am Stat Assoc 1988.
    1. Cesari M, Penninx BW, Lauretani F, Russo CR, Carter C, Bandinelli S, et al. Hemoglobin levels and skeletal muscle: results from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 2004;59:249–254.
    1. Barreto Silva MI, Menna Barreto APM, Pontes KSDS, Costa MSD, Rosina KTC, Souza E, et al. Accuracy of surrogate methods to estimate skeletal muscle mass in non‐dialysis dependent patients with chronic kidney disease and in kidney transplant recipients. Clin Nutr 2021;40:303–312.
    1. Penninx BW, Pahor M, Cesari M, Corsi AM, Woodman RC, Bandinelli S, et al. Anemia is associated with disability and decreased physical performance and muscle strength in the elderly. J Am Geriatr Soc 2004;52:719–724.
    1. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 2014;69:547–558.
    1. Bohannon RW, Wang YC, Yen SC, Grogan KA. Handgrip strength: a comparison of values obtained from the NHANES and NIH toolbox studies. Am J Occup Ther 2019;73:10.5014/ajot.2019.029538
    1. Floriano JP, Nahas PC, de Branco FMS, Dos Reis AS, Rossato LT, Santos HO, et al. Serum uric acid is positively associated with muscle mass and strength, but not with functional capacity, in kidney transplant patients. Nutrients 2020;12:2390, 10.3390/nu12082390
    1. Crispin P. Effect of anemia on muscle oxygen saturation during submaximal exercise. Transfusion 2020;60:36–44.
    1. Lundgren KM, Aspvik NP, Langlo KAR, Braaten T, Wisløff U, Stensvold D, et al. Blood volume, hemoglobin mass, and peak oxygen uptake in older adults: the generation 100 study. Front Sports Act Living 2021;3:638139, 10.3389/fspor.2021.638139
    1. Plenge U, Belhage B, Guadalupe‐Grau A, Andersen PR, Lundby C, Dela F, et al. Erythropoietin treatment enhances muscle mitochondrial capacity in humans. Front Physiol 2012;3:50.
    1. Podbregar M, Gavric AU, Podbregar E, Mozina H, Stefanovic S. Red blood cell transfusion and skeletal muscle tissue oxygenation in anaemic haematologic outpatients. Radiol Oncol 2016;4:449–455.
    1. Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015;80:131–142.
    1. Lofaro D, Perri A, Aversa A, Aquino B, Bonofiglio M, la Russa A, et al. Testosterone in renal transplant patients: effect on body composition and clinical parameters. J Nephrol 2018;31:775–783.
    1. Chiu HT, Shih MT, Chen WL. Examining the association between grip strength and testosterone. Aging Male 2020;23:915–922.
    1. Wittert GA, Chapman IM, Haren MT, Mackintosh S, Coates P, Morley JE. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low‐normal gonadal status. J Gerontol A Biol Sci Med Sci 2003;58:618–625.
    1. Lin IH, Wong TC, Nien SW, Wang HH, Chiang YJ, Yang SH. Geriatric nutritional risk index, a simplified nutritional screening index, is a strong predictor of handgrip strength in renal transplant recipients. Transplant Proc 2018;50:2509–2514.
    1. Dziegala M, Josiak K, Kasztura M, Kobak K, von Haehling S, Banasiak W, et al. Iron deficiency as energetic insult to skeletal muscle in chronic diseases. J Cachexia Sarcopenia Muscle 2018;9:802–815.
    1. Finch CA, Gollnick PD, Hlastala MP, Miller LR, Dillmann E, Mackler B. Lactic acidosis as a result of iron deficiency. J Clin Invest 1979;64:129–137.
    1. Leermakers PA, Remels AHV, Zonneveld MI, Rouschop KMA, Schols AMWJ, Gosker HR. Iron deficiency‐induced loss of skeletal muscle mitochondrial proteins and respiratory capacity; the role of mitophagy and secretion of mitochondria‐containing vesicles. FASEB J 2020;34:6703–6717.
    1. Barrientos T, Laothamatas I, Koves TR, Soderblom EJ, Bryan M, Moseley MA, et al. Metabolic catastrophe in mice lacking transferrin receptor in muscle. EBioMedicine 2015;2:1705–1717.
    1. Yanishi M, Kinoshita H, Tsukaguchi H, Kimura Y, Koito Y, Jino E, et al. Dual energy X‐ray absorptiometry and bioimpedance analysis are clinically useful for measuring muscle mass in kidney transplant recipients with sarcopenia. Transplant Proc 2018;50:150–154.
    1. Nemes S, Jonasson JM, Genell A, Steineck G. Bias in odds ratios by logistic regression modelling and sample size. BMC Med Res Methodol 2009;9:56.
    1. von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2021. J Cachexia Sarcopenia Muscle 2021;12:2259–2261.

Source: PubMed

3
Subscribe