First-in-human phase 2 trial with mite allergoids coupled to mannan in subcutaneous and sublingual immunotherapy

Antonio Nieto, Ángel Mazón, María Nieto, Ethel Ibáñez, Dah-Tay Jang, Susana Calaforra, Pilar Alba, Carmen Pérez-Francés, Ruth Llusar, Javier Montoro, Antonio de Mateo, Remedios Alamar, David El-Qutob, Javier Fernández, Luis Moral, Teresa Toral, Mónica Antón, Carmen Andreu, Ángel Ferrer, Isabel-María Flores, Neus Cerdá, Sandra Del Pozo, Raquel Caballero, José Luis Subiza, Miguel Casanovas, Antonio Nieto, Ángel Mazón, María Nieto, Ethel Ibáñez, Dah-Tay Jang, Susana Calaforra, Pilar Alba, Carmen Pérez-Francés, Ruth Llusar, Javier Montoro, Antonio de Mateo, Remedios Alamar, David El-Qutob, Javier Fernández, Luis Moral, Teresa Toral, Mónica Antón, Carmen Andreu, Ángel Ferrer, Isabel-María Flores, Neus Cerdá, Sandra Del Pozo, Raquel Caballero, José Luis Subiza, Miguel Casanovas

Abstract

Background: Polymerized allergens conjugated to non-oxidized mannan (PM-allergoids) are novel vaccines targeting dendritic cells (DCs). Previous experimental data indicate that PM-allergoids are readily taken up by DCs and induce Treg cells. This first-in-human study was aimed to evaluate safety and to find the optimal dose of house dust mite PM-allergoid (PM-HDM) administered subcutaneously (SC) or sublingually (SL).

Methods: In a randomized, double-blind, double-dummy, placebo-controlled trial, 196 subjects received placebo or PM-HDM at 500, 1000, 3000, or 5000 mannan-conjugated therapeutic units (mTU)/mL in 9-arm groups for 4 months. All subjects received 5 SC doses (0.5 ml each) every 30 days plus 0.2 ml SL daily. The primary efficacy outcome was the improvement of titrated nasal provocation tests (NPT) with D. pteronyssinus at baseline and at the end of the study. All adverse events and reactions were recorded and assessed. Secondary outcomes were the combination of symptom and medication scores (CSMS) and serological markers.

Results: No moderate or severe adverse reactions were reported. Subjects improving the NPT after treatment ranged from 45% to 62% in active SC, 44% to 61% in active SL and 16% in placebo groups. Statistical differences between placebo and active groups were all significant above 500 mTU, being the highest with 3000 mTU SL (p = 0.004) and 5000 mTU SC (p = 0.011). CSMS improvement over placebo reached 70% (p < 0.001) in active 3000 mTU SC and 40% (p = 0.015) in 5000 mTU SL groups.

Conclusions: PM-HDM immunotherapy was safe and successful in achieving primary and secondary clinical outcomes in SC and SL at either 3000 or 5000 mTU/ml.

Keywords: allergoid; clinical trial; i; mannan; mmunotherapy; polymerized.

Conflict of interest statement

AN received fees of Astra‐Zeneca, Merck, Novartis. DE‐Q received fees of Chiesi, Sanofi, Stallèrgenes‐Greer, Astra‐Zeneca, Glaxo‐Smith‐kline, Roxall Medicine, and Novartis. AM, MN, EI, DJ, SC, C P‐F, JM, A de M, RA, JF, LM, MA, CA, and AF declare no conflict of interest. RC and SdP are employees of Inmunotek SL. JLS and MC are shareholders of Inmunotek SL.

© 2022 Inmunotek SL. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Distribution of groups and study schedule
FIGURE 2
FIGURE 2
Consort diagram of the study population. NPT*: number of subjects with data of NPT al baseline (VO) and at the end (V6)

References

    1. Bousquet J, Lockey R, Malling HJ, et al. Allergen immunotherapy: therapeutic vaccines for allergic diseases. World Health Organization. American academy of allergy, asthma and immunology. Ann Allergy Asthma Immunol. 1998;81(5):401‐405. doi:10.1016/s1081-1206(10)63136-5
    1. Nurmatov U, Dhami S, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: a systematic overview of systematic reviews. Clinical and Translational Allergy. 2017;7(1):2‐16. doi:10.1186/s13601-017-0159-6
    1. Cuesta‐Herranz J, Laguna JJ, Mielgo R, et al. Quality of life improvement with allergen immunotherapy treatment in patients with rhinoconjunctivitis in real life conditions. Results of an observational prospective study (ÍCARA). Eur Ann Allergy Clin Immunol. 2019;51(05):222. doi:10.23822/eurannaci.1764-1489.104
    1. Frati F, Dell'Albani I, Incorvaia C. Long‐term efficacy of allergen immunotherapy: what do we expect? Immunotherapy. 2013;5(2):131‐133. doi:10.2217/imt.12.154
    1. Penagos M, Eifan AO, Durham SR, Scadding GW. Duration of allergen immunotherapy for long‐term efficacy in allergic Rhinoconjunctivitis. Curr Treat Options Allergy. 2018;5(3):275‐290. doi:10.1007/s40521-018-0176-2
    1. Noon L. Prophylactic inoculation against hay fever. Lancet. 1911;I:1572‐1573.
    1. Akinfenwa O, Rodriguez‐Dominguez A, Vrtala S, Valenta R, Campana R. Novel vaccines for allergen‐specific immunotherapy. Curr Opin Allergy Clin Immunol. 2021;21(1):86‐99. doi:10.1097/ACI.0000000000000706
    1. Jensen‐Jarolim E, Bachmann MF, Bonini S, et al. State‐of‐the‐art in marketed adjuvants and formulations in allergen immunotherapy: A position paper of the European academy of allergy and clinical immunology (EAACI). Allergy. 2020;75(4):746‐760. doi:10.1111/all.14134
    1. Roberts G, Pfaar O, Akdis CA, et al. EAACI guidelines on allergen immunotherapy: allergic rhinoconjunctivitis. Allergy. 2018;73(4):765‐798. doi:10.1111/all.13317
    1. Berings M, Karaaslan C, Altunbulakli C, et al. Advances and highlights in allergen immunotherapy: on the way to sustained clinical and immunologic tolerance. J Allergy Clin Immunol. 2017;140(5):1250‐1267. doi:10.1016/j.jaci.2017.08.025
    1. Celebi Sozener Z, Mungan D, Cevhertas L, Ogulur I, Akdis M, Akdis C. Tolerance mechanisms in allergen immunotherapy. Curr Opin Allergy Clin Immunol. 2020;20(6):591‐601. doi:10.1097/ACI.0000000000000693
    1. Fujita H, Soyka MB, Akdis M, Akdis CA. Mechanisms of allergen‐specific immunotherapy. Clin Transl Allergy. 2012;2(1):2. doi:10.1186/2045-7022-2-2
    1. Grammer LC, Shaughnessy MA, Patterson R. Modified forms of allergen immunotherapy. J Allergy Clin Immunol. 1985;76:397‐401.
    1. Manzano AI, Javier Cañada F, Cases B, et al. Structural studies of novel glycoconjugates from polymerized allergens (allergoids) and mannans as allergy vaccines. Glycoconj J. 2016;33(1):93‐101. doi:10.1007/s10719-015-9640-4
    1. Sirvent S, Soria I, Cirauqui C, et al. Novel vaccines targeting dendritic cells by coupling allergoids to nonoxidized mannan enhance allergen uptake and induce functional regulatory T cells through programmed death ligand 1. J Allergy Clin Immunol. 2016;138(2):558‐567 e11. doi:10.1016/j.jaci.2016.02.029
    1. Soria I, Álvarez J, Manzano AI, et al. Mite allergoids coupled to nonoxidized mannan from saccharomyces cerevisae efficiently target canine dendritic cells for novel allergy immunotherapy in veterinary medicine. Vet Immunol Immunopathol. 2017;190:65‐72. doi:10.1016/j.vetimm.2017.07.004
    1. Soria I, López‐Relano J, Viñuela M, et al. Oral myeloid cells uptake allergoids coupled to mannan driving Th1/Treg responses upon sublingual delivery in mice. Allergy. 2018;73(4):875‐884. doi:10.1111/all.13396
    1. Benito‐Villalvilla C, Perez‐Diego M, Angelina A, et al. Allergoid‐mannan conjugates reprogram monocytes into tolerogenic dendritic cells via epigenetic and metabolic rewiring. J Allergy Clin Immunol. 2022;149(1):212‐222.e9. doi:10.1016/j.jaci.2021.06.012
    1. Benito‐Villalvilla C, Perez‐Diego M, Subiza JL, Palomares O. Allergoid‐mannan conjugates imprint tolerogenic features in human macrophages. Allergy. 2022;77(1):320‐323. doi:10.1111/all.15118
    1. Benito‐Villalvilla C, Soria I, Perez‐Diego M, Fernandez‐Caldas E, Subiza JL, Palomares O. Alum impairs tolerogenic properties induced by allergoid‐mannan conjugates inhibiting mTOR and metabolic reprogramming in human DCs. Allergy. 2020;75(3):648‐659. doi:10.1111/all.14036
    1. Benito‐Villalvilla C, Soria I, Subiza JL, Palomares O. Novel vaccines targeting dendritic cells by coupling allergoids to mannan. Allergo J Int. 2018;27(8):256‐262. doi:10.1007/s40629-018-0069-8
    1. González J‐L, Zalve V, Fernández‐Caldas E, Cases B, Subiza J‐L, Casanovas M. A pilot study of immunotherapy in dogs with atopic dermatitis using a mannan‐Dermatophagoides farinae allergoid targeting dendritic cells. Vet Dermatol. 2018;29(5):449‐e152. doi:10.1111/vde.12679
    1. Navarro A, Colas C, Anton E, et al. Epidemiology of allergic rhinitis in allergy consultations in Spain: Alergologica‐2005. J Investig Allergol Clin Immunol. 2009;19(Suppl 2):7‐13.
    1. Rosenau H. Legal prerequisites for clinical trials under the revised declaration of Helsinki and the European convention on human rights and biomedicine. Eur J Health Law. 2000;7(2):105‐121.
    1. European_Medicines_Agency . Guideline for good clinical practice E6 (R2) . EMA/CHMP/ICH/135/1995. Available at . 2016.
    1. Dordal MT, Lluch‐Bernal M, Sanchez MC, et al. Allergen‐specific nasal provocation testing: review by the rhinoconjunctivitis committee of the Spanish Society of Allergy and Clinical Immunology. J Investig Allergol Clin Immunol. 2011;21(1):1‐12. quiz follow 12.
    1. Malm L, Gerth van Wijk R, Bachert C. Guidelines for nasal provocations with aspects on nasal patency, airflow, and airflow resistance. International committee on objective assessment of the nasal airways, international Rhinologic society. Rhinology. 2000;38(1):1‐6.
    1. CDER . Allergic rhinitis: developing drug products for treatment guidance for industry . . 2000.
    1. Canonica GW, Baena‐Cagnani CE, Bousquet J, et al. Recommendations for standardization of clinical trials with allergen specific immunotherapy for respiratory allergy. A statement of a world allergy organization (WAO) taskforce. Allergy. 2007;62(3):317‐324.
    1. Pfaar O, Demoly P. Gerth van Wijk R, et al. recommendations for the standardization of clinical outcomes used in allergen immunotherapy trials for allergic rhinoconjunctivitis: an EAACI position paper. Allergy. 2014;69(7):854‐867. doi:10.1111/all.12383
    1. Álvarez‐Cuesta E, Bousquet J, Canonica GW, Durham SR, Malling HJ, Valovirta E. Standards for practical allergen‐specific immunotherapy. Allergy. 2006;61(Suppl 82):1‐20.
    1. Álvarez‐Cuesta E, Boquete M, Cadahía A, et al. Sociedad Española de Alergología e Inmunología Clínica. Normativa sobre Inmunoterapia en Enfermedades Alérgicas. SANED; 1990: 33–34,46–50.
    1. Robbins T, Lim Choi Keung SN, Sankar S, Randeva H, Arvanitis TN. Application of standardised effect sizes to hospital discharge outcomes for people with diabetes. BMC Med Inform Decis Mak. 2020;20(1):150. doi:10.1186/s12911-020-01169-z
    1. Sullivan GM, Feinn R. Using effect size‐or why the P value is not enough. J Grad Med Educ. 2012;4(3):279‐282. doi:10.4300/JGME-D-12-00156.1
    1. Pagan JA, Huertas AJ, Iraola V, et al. Mite exposure in a Spanish Mediterranean region. Allergol Immunopathol (Madr). 2012;40(2):92‐99. doi:10.1016/j.aller.2011.02.008
    1. European_Medicines_Agency . Guideline on the clinical development of products for specific immunotherapy for the treatment of allergic diseases . CHMP/EWP/18504/2006 Electronic citation: . 2008.
    1. Calderon MA, Larenas D, Kleine‐Tebbe J, et al. European academy of allergy and clinical immunology task force report on 'dose‐response relationship in allergen‐specific immunotherapy'. Allergy. 2011;66(10):1345‐1359. doi:10.1111/j.1398-9995.2011.02669.x
    1. Auge J, Vent J, Agache I, et al. EAACI position paper on the standardization of nasal allergen challenges. Allergy. 2018;73(8):1597‐1608. doi:10.1111/all.13416
    1. Schumacher MJ. Nasal congestion and airway obstruction: the validity of available objective and subjective measures. Curr Allergy Asthma Rep. 2002;2(3):245‐251. doi:10.1007/s11882-002-0026-x
    1. Gotlib T, Samolinski B, Grzanka A. Bilateral nasal allergen provocation monitored with acoustic rhinometry. Assessment of both nasal passages and the side reacting with greater congestion: relation to the nasal cycle. Clin Exp Allergy. 2005;35(3):313‐318. doi:10.1111/j.1365-2222.2005.02175.x
    1. Hilberg O. Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects. Allergy. 2002;57(Suppl 70):5‐39. doi:10.1046/j.0908-665x.2001.all.doc.x
    1. Nathan RA. The pathophysiology, clinical impact, and management of nasal congestion in allergic rhinitis. Clin Ther. 2008;30(4):573‐586. doi:10.1016/j.clinthera.2008.04.011
    1. Keles S, Karakoc‐Aydiner E, Ozen A, et al. A novel approach in allergen‐specific immunotherapy: combination of sublingual and subcutaneous routes. J Allergy Clin Immunol. 2011;128(4):808‐815 e7. doi:10.1016/j.jaci.2011.04.033
    1. Yukselen A, Kendirli SG, Yilmaz M, Altintas DU, Karakoc GB. Effect of one‐year subcutaneous and sublingual immunotherapy on clinical and laboratory parameters in children with rhinitis and asthma: a randomized, placebo‐controlled, double‐blind, double‐dummy study. Int Arch Allergy Immunol. 2012;157(3):288‐298. doi:10.1159/000327566
    1. Canonica GW, Cox L, Pawankar R, et al. Sublingual immunotherapy: world allergy organization position paper 2013 update. World Allergy Organization J. 2014;7(1):6. doi:10.1186/1939-4551-7-6
    1. Pfaar O, Twuijver E, Boot JD, et al. A randomized DBPC trial to determine the optimal effective and safe dose of a SLIT ‐birch pollen extract for the treatment of allergic rhinitis: results of a phase II study. Allergy. 2016;71(1):99‐107. doi:10.1111/all.12760
    1. Pfaar O, Agache I, de Blay F, et al. Perspectives in allergen immunotherapy: 2019 and beyond. Allergy. 2019;74(Suppl 108):3‐25. doi:10.1111/all.14077
    1. Shamji MH, Ljørring C, Francis JN, et al. Functional rather than immunoreactive levels of IgG4 correlate closely with clinical response to grass pollen immunotherapy. Allergy. 2012;67(2):217‐226. doi:10.1111/j.1398-9995.2011.02745.x
    1. Cosmi L, Santarlasci V, Angeli R, et al. Sublingual immunotherapy with Dermatophagoides monomeric allergoid down‐regulates allergen‐specific immunoglobulin E and increases both interferon‐gamma‐ and interleukin‐10‐production. Clin Exp Allergy. 2006;36(3):261‐272. doi:10.1111/j.1365-2222.2006.02429.x
    1. O'Hehir RE, Gardner LM, de Leon MP, et al. House dust mite sublingual immunotherapy: the role for transforming growth factor‐beta and functional regulatory T cells. Am J Respir Crit Care Med. 2009;180(10):936‐947. doi:10.1164/rccm.200905-0686OC
    1. Shamji MH, Larson D, Eifan A, Scadding GW, Qin T, Lawson K, Sever ML, Macfarlane E, Layhadi JA, Würtzen PA, Parkin RV, Sanda S, Harris KM, Nepom GT, Togias A, Durham SR Differential induction of allergen‐specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J Allergy Clin Immunol 2021;148(4):1061–1071 e11. doi:10.1016/j.jaci.2021.03.030
    1. Shamji MH, Durham SR. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol. 2017;140(6):1485‐1498. doi:10.1016/j.jaci.2017.10.010
    1. Rauber MM, Wu HK, Adams B, et al. Birch pollen allergen‐specific immunotherapy with glutaraldehyde‐modified allergoid induces IL‐10 secretion and protective antibody responses. Allergy. 2019;74(8):1575‐1579. doi:10.1111/all.13774
    1. Guzmán‐Fulgencio M, Caballero R, Lara B, et al. Safety of immunotherapy with glutaraldehyde modified allergen extracts in children and adults. Allergol Immunopathol (Madr). 2017;45(2):198‐207. doi:10.1016/j.aller.2016.08.008
    1. Lindblad EB. Aluminium compounds for use in vaccines. Immunol Cell Biol. 2004;82(5):497‐505. doi:10.1111/j.0818-9641.2004.01286.x
    1. Scadding GW, Shamji MH, Jacobson MR, et al. Sublingual grass pollen immunotherapy is associated with increases in sublingual Foxp3‐expressing cells and elevated allergen‐specific immunoglobulin G4, immunoglobulin A and serum inhibitory activity for immunoglobulin E‐facilitated allergen binding to B. Clin Exp Allergy. 2010;40(4):598‐606. doi:10.1111/j.1365-2222.2010.03462.x
    1. Apostolopoulos V, Pietersz GA, Tsibanis A, et al. Pilot phase III immunotherapy study in early‐stage breast cancer patients using oxidized mannan‐MUC1 [ISRCTN71711835]. Breast Cancer Res. 2006;8(3):R27. doi:10.1186/bcr1505
    1. Vassilaros S, Tsibanis A, Tsikkinis A, Pietersz GA, McKenzie IF, Apostolopoulos V. Up to 15‐year clinical follow‐up of a pilot phase III immunotherapy study in stage II breast cancer patients using oxidized mannan‐MUC1. Immunotherapy. 2013;5(11):1177‐1182. doi:10.2217/imt.13.126
    1. Petrushina I, Ghochikyan A, Mkrtichyan M, et al. Mannan‐Abeta28 conjugate prevents Abeta‐plaque deposition, but increases microhemorrhages in the brains of vaccinated Tg2576 (APPsw) mice. J Neuroinflammation. 2008;5:42. doi:10.1186/1742-2094-5-42

Source: PubMed

3
Subscribe