The common inflammatory etiology of depression and cognitive impairment: a therapeutic target

David J Allison, David S Ditor, David J Allison, David S Ditor

Abstract

Chronic inflammation has been shown to contribute to the development of a wide variety of disorders by means of a number of proposed mechanisms. Depression and cognitive impairment are two such disorders which may share a closely linked inflammatory etiology. The ability of inflammatory mediators to alter the activity of enzymes, from key metabolic pathways, may help explain the connection between these disorders. The chronic up-regulation of the kynurenine pathway results in an imbalance in critical neuroactive compounds involving the reduction of tryptophan and elevation of tryptophan metabolites. Such imbalances have established implications in both depression and cognitive impairment. This may implicate the immune system as a potential therapeutic target in the treatment of these disorders. The most common treatment modalities currently utilized, involve drug interventions which act on downstream targets. Such treatments help to reestablish protein balances, but fail to treat the inflammatory basis of the disorder. The use of anti-inflammatory interventions, such as regular exercise, may therefore, contribute to the effectiveness of current drug interventions in the treatment of both depression and cognitive impairment.

Figures

Figure 1
Figure 1
Simplified depiction of tryptophan breakdown in the kynurenine pathway. Tryptophan (TRP) that is not transported across the blood brain barrier (BBB) for the synthesis of serotonin (5-HT) is degraded into kynurenine (KYN) by the enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO). After this point, KYN is further degraded along one of two distinct branches; either the kynurenine-nicotinamide adenine dinucleotide (KYN-NAD) branch, or the kyneine-kynurenic acid (KYN-KYNA) branch. Within the KYN-NAD branch, KYN is acted on by the enzyme kynurenine 3-monooxygenase (KMO) whereby it is converted to 3-hydroxykynurenine (3-HK) and later quinolinic acid (QUIN) via a spontaneous reaction (and ultimately NAD+). Within the KYN-KYNA branch, KYN is acted on by the enzyme kynurenine aminotransferase (KAT) whereby it is converted to kynurenic acid (KYNA).
Figure 2
Figure 2
Peripheral and central kynurenine pathway interaction. As indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are found at only very low concentrations within the brain, concentrations of within-brain tryptophan (TRP) and kynurenines are largely dependent on those from the periphery. TRP from the periphery competes with other large neutral amino acids (LNAA) for passage across the blood brain barrier (BBB) to be used in the synthesis of serotonin (5-HT). Kynurenine (KYN) and 3-hydroxykynurenine (3-HK) are also capable of crossing the BBB whereby they participate in the production of kynurenic acid (KYNA) and quinolinic acid (QUIN) which do not easily cross it.
Figure 3
Figure 3
Influence of chronic inflammation on the kynurenine pathway. Certain proinflammatory cytokines possess the ability to up-regulate enzymes of the kynurenine pathway, thereby increasing the rate of tryptophan (TRP) degradation and production of kynurenines in the periphery. This may result in reduced concentrations of peripheral TRP and elevated peripheral levels of kynurenines. The reduced levels of peripheral TRP may then result in insufficient levels within the brain and a corresponding serotonin (5-HT) deficit. Proinflammatory cytokines also up-regulate enzymes in the brain, housed within astrocytes, microglia, and infiltrating macrophages, which utilize the elevated kynurenine concentrations for the production of further metabolites such as quinolinic acid (QUIN) and kynurenic acid (KYNA).
Figure 4
Figure 4
Inflammatory mechanisms of depression. Proinflammatory cytokines may contribute to depressive symptoms by means of various mechanisms. (1) Proinflammatory cytokines act on serotonin transporter (SERT) proteins within the brain causing a re-uptake of serotonin (5-HT) and corresponding reduced extracellular concentrations. (2) Proinflammatory cytokines up-regulate enzymes such as indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) resulting in reduced tryptophan (TRP) availability, ultimately contributing to reduced 5-HT synthesis. (3) Both 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) may contribute to elevated levels of reactive oxygen species (ROS) and oxidative stress within the brain. (4) QUIN may induce N-methyl-D-aspartate (NMDA) over-activity thereby contributing to hippocampal atrophy and a loss of glucocorticoid receptors, ultimately leading to a loss of negative feedback and hypothalamic-pituitary-adrenal (HPA) axis over-activity.
Figure 5
Figure 5
Inflammatory mechanism of cognitive impairment. Hippocampal atrophy caused by the over-activation of respective receptors for glucocorticoids and quinolinic acid (QUIN) may contribute to cognitive impairment. Additionally, elevated concentrations of kynurenine (KYN) that is preferentially metabolized along the kynurenine-kynurenic acid (KYN-KYNA) branch of the kynurenine pathway results in elevations of kynurenic acid (KYNA). As KYNA acts as an antagonist for both the alpha-7-nicotinic acetylcholine (α7nACh) and N-methyl-D-aspartate (NMDA) receptors it may contribute to cognitive deficits by reducing neurotransmitters such as glutamate, acetylcholine, and dopamine.
Figure 6
Figure 6
Targets of treatment interventions. Common treatment strategies for disorders associated with depression and cognitive impairment typically target downstream enzymes or receptors. Alternatively, intervention strategies such as regular exercise possess anti-inflammatory properties which helps restore a balance in inflammatory mediators, thereby restoring proper enzyme regulation and protein balances upstream.

References

    1. Felger JC, Lotrich FE. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199–229. doi: 10.1016/j.neuroscience.2013.04.060.
    1. Schiepers OJG, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:201–217. doi: 10.1016/j.pnpbp.2004.11.003.
    1. McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev. 2009;33:355–366. doi: 10.1016/j.neubiorev.2008.10.005.
    1. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–445. doi: 10.1146/annurev-immunol-031210-101322.
    1. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–880. doi: 10.1038/nature05487.
    1. Festa A, D’Agostino R, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS) Circulation. 2000;102:42–47. doi: 10.1161/01.CIR.102.1.42.
    1. Temelkova-Kurktschiev T, Henkel E, Koehler C, Karrei K, Hanefeld M. Subclinical inflammation in newly detected type II diabetes and impaired glucose tolerance. Diabetologia. 2002;45:151. doi: 10.1007/s125-002-8256-1.
    1. Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol. 2001;21:1876–1890. doi: 10.1161/hq1201.100220.
    1. Maier SF, Goeler LE, Fleshner M, Watkins LR. The role of the vagus nerve in cytokine-to-brain communication. Ann N Y Acad Sci. 1998;840:289–300. doi: 10.1111/j.1749-6632.1998.tb09569.x.
    1. Watkins LR, Maier SF, Goehler LE. Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci. 1995;57:1011–1026. doi: 10.1016/0024-3205(95)02047-M.
    1. Banks WA, Ortiz L, Plotkin SR, Kastin AJ. Human interleukin (IL) 1 alpha, murine IL-1 alpha and murine IL-1 beta are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther. 1991;259:988–996.
    1. Chesnokova V, Melmed S, Angeles CL, Angeles L. Minireview: neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling. Molecules. 2014;143:1571–1574.
    1. Maes M, Lambrechts J, Bosmans E, Jacobs J, Suy E, Vandervorst C, de Jonckheere C, Minner B, Raus J. Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med. 1992;22:45–53. doi: 10.1017/S0033291700032712.
    1. Maes M. Major depression and activation of the inflammatory response system. Adv Exp Med Biol. 1999;461:25–46. doi: 10.1007/978-0-585-37970-8_2.
    1. Sluzewska A. Indicators of immune activation in depressed patients. Adv Exp Med Biol. 1999;461:59–73. doi: 10.1007/978-0-585-37970-8_4.
    1. Tobinick E. Tumour necrosis factor modulation for treatment of Alzheimer’s disease rationale and current evidence. CNS Drugs. 2009;23:713–725. doi: 10.2165/11310810-000000000-00000.
    1. Oxenkrug GF. Genetic and hormonal regulation of tryptophan kynurenine metabolism: implications for vascular cognitive impairment, major depressive disorder, and aging. Ann N Y Acad Sci. 2007;1122:35–49. doi: 10.1196/annals.1403.003.
    1. Gál EM, Sherman AD. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res. 1980;5:223–239. doi: 10.1007/BF00964611.
    1. Oxenkrug GF. Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci. 2010;47:56–63.
    1. Kanai M, Nakamura T, Funakoshi H. Identification and characterization of novel variants of the tryptophan 2,3-dioxygenase gene: differential regulation in the mouse nervous system during development. Neurosci Res. 2009;64:111–117. doi: 10.1016/j.neures.2009.02.004.
    1. Dang Y, Dale WE, Brown OR. Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic Biol Med. 2000;28:615–624. doi: 10.1016/S0891-5849(99)00272-5.
    1. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem. 1991;56:2007–2017. doi: 10.1111/j.1471-4159.1991.tb03460.x.
    1. Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, Croitoru J, Brew BJ. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78:842–853. doi: 10.1046/j.1471-4159.2001.00498.x.
    1. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol. 2000;164:3596–3599. doi: 10.4049/jimmunol.164.7.3596.
    1. Shirey KA, Jung J-Y, Maeder GS, Carlin DJM. Upregulation of IFN-γ receptor expression by proinflammatory cytokines influences IDO activation in epithelial cells. J Interf Cytokine Res. 2006;26:53–62. doi: 10.1089/jir.2006.26.53.
    1. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science. 2005;310:850–855. doi: 10.1126/science.1117634.
    1. Fallarino F, Grohmann U, Vacca C, Bianchi R. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–1077. doi: 10.1038/sj.cdd.4401073.
    1. Owe-Young R, Webster NL, Mukhtar M, Pomerantz RJ, Smythe G, Walker D, Armati PJ, Crowe SM, Brew BJ. Kynurenine pathway metabolism in human blood-brain-barrier cells: implications for immune tolerance and neurotoxicity. J Neurochem. 2008;105:1346–1357. doi: 10.1111/j.1471-4159.2008.05241.x.
    1. Zhu C-B, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology. 2006;31:2121–2131.
    1. Morikawa O, Sakai N, Obara H, Saito N. Effects of interferon-alpha, interferon-gamma and cAMP on the transcriptional regulation of the serotonin transporter. Eur J Pharmacol. 1998;349:317–324. doi: 10.1016/S0014-2999(98)00187-3.
    1. Delgado P. Serotonin function and the mechanism of antidepressant action by. Arch Gen Psychiatry. 1990;47:411–418. doi: 10.1001/archpsyc.1990.01810170011002.
    1. Culley WJ, Saunders RN, Mertz ET, Jolly DH. Effect of a tryptophan deficient diet on brain serotonin and plasma tryptophan level. Proc Soc Exp Biol Med. 1963;113:645–648. doi: 10.3181/00379727-113-28451.
    1. Gal EM, Drewes PA. Studies on the metabolism of 5-hydroxytryptamine (serotonin). II. Effect of tryptophan deficiency in rats. Proc Soc Exp Biol Med. 1962;110:368–371. doi: 10.3181/00379727-110-27520.
    1. Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH, Heninger GR, McDougle CJ. Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology. 1998;19:26–35. doi: 10.1016/S0893-133X(97)00198-X.
    1. Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, Blier P, Diksic M. Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci. 1997;94:5308–5313. doi: 10.1073/pnas.94.10.5308.
    1. Okuda S, Nishiyama N, Saito H, Katsuki H. 3-hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem. 2002;70:299–307. doi: 10.1046/j.1471-4159.1998.70010299.x.
    1. Braidy N, Grant R, Adams S, Guillemin GJ. Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J. 2010;277:368–382. doi: 10.1111/j.1742-4658.2009.07487.x.
    1. Stokes PE. The potential role of excessive cortisol induced by HPA hyperfunction in the pathogenesis of depression. Eur Neuropsychopharmacol. 1995;5:77–82. doi: 10.1016/0924-977X(95)00039-R.
    1. Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol. 2003;15:811–812. doi: 10.1046/j.1365-2826.2003.01058.x.
    1. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157:115–118. doi: 10.1176/appi.ajp.157.7.1120.
    1. Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004;161:1957–1966. doi: 10.1176/appi.ajp.161.11.1957.
    1. Sheline YI. Untreated depression and Hippocampal volume loss. Am J Psychiatry. 2003;160:1516–1518. doi: 10.1176/appi.ajp.160.8.1516.
    1. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein H-G, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94. doi: 10.1186/1742-2094-8-94.
    1. Carroll BJ, Curtis GC, Davies BM, Mendels J, Sugerman AA. Urinary free cortisol excretion in depression. Psychol Med. 1976;6:43–50. doi: 10.1017/S0033291700007480.
    1. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R. Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry. 2002;7:468–473. doi: 10.1038/sj.mp.4000995.
    1. Lotrich FE. Major depression during interferon-alpha treatment: vulnerability and prevention. Dialogues Clin Neurosci. 2009;11:417–425.
    1. Kessing LV. Cognitive impairment in the euthymic phase of affective disorder. Psychol Med. 1998;28:1027–1038. doi: 10.1017/S0033291798006862.
    1. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry. 1998;172:527–532. doi: 10.1192/bjp.172.6.527.
    1. Bender DA, McCreanor GM. Kynurenine hydroxylase: a potential rate-limiting enzyme in tryptophan metabolism. Biochem Soc Trans. 1985;13:441–443.
    1. Alkondon M, Pereira EFR, Yu P, Arruda EZ, Almeida LEF, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX. Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci. 2004;24:4635–4648. doi: 10.1523/JNEUROSCI.5631-03.2004.
    1. Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu H-Q, Schwarcz R. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology. 2010;35:1734–1742.
    1. Rassoulpour A, Wu H-Q, Ferre S, Schwarcz R. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem. 2005;93:762–765. doi: 10.1111/j.1471-4159.2005.03134.x.
    1. Zmarowski A, Wu H-Q, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP. Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci. 2009;29:529–538. doi: 10.1111/j.1460-9568.2008.06594.x.
    1. Wu H-Q, Pereira EFR, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci. 2010;40:204–210. doi: 10.1007/s12031-009-9235-2.
    1. Chess AC, Simoni MK, Alling TE, Bucci DJ. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull. 2007;33:797–804. doi: 10.1093/schbul/sbl033.
    1. Chess AC, Bucci DJ. Increased concentration of cerebral kynurenic acid alters stimulus processing and conditioned responding. Behav Brain Res. 2006;170:326–332. doi: 10.1016/j.bbr.2006.03.006.
    1. Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20:106–118. doi: 10.1016/S0893-133X(98)00067-0.
    1. Gulaj E, Pawlak K, Bien B, Pawlak D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci. 2010;55:204–211. doi: 10.2478/v10039-010-0023-6.
    1. Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8:25.
    1. Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. J Neuroinflammation. 2008;5:2. doi: 10.1186/1742-2094-5-2.
    1. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–1917. doi: 10.1176/appi.ajp.163.11.1905.
    1. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000;22:370–379. doi: 10.1016/S0893-133X(99)00134-7.
    1. Fitzgerald P, O’Brien SM, Scully P, Rijkers K, Scott LV, Dinan TG. Cutaneous glucocorticoid receptor sensitivity and pro-inflammatory cytokine levels in antidepressant-resistant depression. Psychol Med. 2006;36:37–43. doi: 10.1017/S003329170500632X.
    1. Nierenberg AA, Alpert JE. Depressive breakthrough. Psychiatr Clin North Am. 2000;23:731–742. doi: 10.1016/S0193-953X(05)70194-5.
    1. Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 2004;174:32–38. doi: 10.1007/s00213-003-1709-2.
    1. Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR. Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry. 2008;165:1040–1047. doi: 10.1176/appi.ajp.2008.07071135.
    1. Buchanan RW, Conley RR, Dickinson D, Ball MP, Feldman S, Gold JM, McMahon RP. Galantamine for the treatment of cognitive impairments in people with schizophrenia. Am J Psychiatry. 2008;165:82–89. doi: 10.1176/appi.ajp.2007.07050724.
    1. Buchanan RW, Javitt DC, Marder SR, Schooler NR, Gold JM, McMahon RP, Heresco-Levy U, Carpenter WT. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am J Psychiatry. 2007;164:1593–1602. doi: 10.1176/appi.ajp.2007.06081358.
    1. Moriguchi S, Marszalec W, Zhao X, Yeh JZ, Narahashi T. Mechanism of action of galantamine on N-methyl-D-aspartate receptors in rat cortical neurons. J Pharmacol Exp Ther. 2004;310:933–942. doi: 10.1124/jpet.104.067603.
    1. Mathur N, Pedersen BK: Exercise as a Mean to Control Low-Grade Systemic Inflammation. 2008. 2008.
    1. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–1162. doi: 10.1152/japplphysiol.00164.2004.
    1. Ford ES. Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults. Epidemiology. 2002;13:561–568. doi: 10.1097/00001648-200209000-00012.
    1. Albert MA, Glynn RJ, Ridker PM. Effect of physical activity on serum C-reactive protein. Am J Cardiol. 2004;93:221–225. doi: 10.1016/j.amjcard.2003.09.046.
    1. Abramson JL, Vaccarino V. Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch Intern Med. 2002;162:1286–1292. doi: 10.1001/archinte.162.11.1286.
    1. Tomaszewski M, Charchar FJ, Przybycin M, Crawford L, Wallace AM, Gosek K, Lowe GD, Zukowska-Szczechowska E, Grzeszczak W, Sattar N, Dominiczak AF. Strikingly low circulating CRP concentrations in ultramarathon runners independent of markers of adiposity: how low can you go? Arterioscler Thromb Vasc Biol. 2003;23:1640–1644. doi: 10.1161/01.ATV.0000087036.75849.0B.
    1. Fiers W. Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 1991;285:199–212. doi: 10.1016/0014-5793(91)80803-B.
    1. Mizuhara H, O’Neill E, Seki N, Ogawa T, Kusunoki C, Otsuka K, Satoh S, Niwa M, Senoh H, Fujiwara H. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6. J Exp Med. 1994;179:1529–1537. doi: 10.1084/jem.179.5.1529.
    1. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J. 2003;17:884–886.
    1. Keller C, Keller P, Giralt M, Hidalgo J, Pedersen BK. Exercise normalises overexpression of TNF-alpha in knockout mice. Biochem Biophys Res Commun. 2004;321:179–182. doi: 10.1016/j.bbrc.2004.06.129.
    1. Van der Poll T, Coyle SM, Barbosa K, Braxton CC, Lowry SF. Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin 10 production during human endotoxemia. J Clin Invest. 1996;97:713–719. doi: 10.1172/JCI118469.
    1. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45:1563–1569. doi: 10.1016/j.jacc.2004.12.077.
    1. Weight LM, Alexander D, Jacobs P. Strenuous exercise: analogous to the acute-phase response? Clin Sci (Lond) 1991;81:677–683.
    1. Fallon KE. The acute phase response and exercise: the ultramarathon as prototype exercise. Clin J Sport Med. 2001;11:38–43. doi: 10.1097/00042752-200101000-00007.
    1. Morimoto Y, Zhang Q, Adachi K. Increased blood quinolinic acid after exercise in mice: implications for sensation of fatigue after exercise. J Heal Sci. 2011;57:367–371. doi: 10.1248/jhs.57.367.
    1. Ito Y, Saito K, Maruta K, Nakagami Y, Koike T, Oguri Y, Nagamura Y. Kynurenine concentration of serum was increased by exercise. Adv Exp Med Biol. 1999;467:717–722. doi: 10.1007/978-1-4615-4709-9_93.
    1. Di Luigi L, Botrè F, Sabatini S, Sansone M, Mazzarino M, Guidetti L, Baldari C, Lenzi A, Caporossi D, Romanelli F, Sgrò P: Acute effects of physical exercise and phosphodiesterase’s type 5 inhibition on serum 11β-hydroxysteroid dehydrogenases related glucocorticoids metabolites: a pilot study.Endocrine 2014. in press.
    1. Salter M, Pogson CI. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem J. 1985;229:499–504.
    1. Da Silva AE, de Aquino LV, Ruiz da Silva F, Lira FS, dos Santos RVT, Rosa JPP, Caperuto E, Tufik S, de Mello MT. Low-grade inflammation and spinal cord injury: exercise as therapy? Mediators Inflamm. 2013;2013:971841.
    1. Dunn AL, Trivedi MH, Kampert JB, Clark CG, Chambliss HO. Exercise treatment for depression: efficacy and dose response. Am J Prev Med. 2005;28:1–8. doi: 10.1016/j.amepre.2004.09.003.
    1. Blumenthal JA, Babyak MA, Doraiswamy PM, Watkins L, Hoffman BM, Barbour KA, Herman S, Craighead WE, Brosse AL, Waugh R, Hinderliter A, Sherwood A. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med. ᅟ;69:587–596. doi: 10.1097/PSY.0b013e318148c19a.
    1. Rimer J, Dwan K, Lawlor DA, Greig CA, McMurdo M, Morley W, Mead GE. Exercise for depression. Cochrane database Syst Rev. 2012;7:CD004366.
    1. Gligoroska JP, Manchevska S. The effect of physical activity on cognition - physiological mechanisms. Mater Sociomed. 2012;24:198–202. doi: 10.5455/msm.2012.24.198-202.

Source: PubMed

3
Subscribe