Heterogeneity of beta-cell function in subjects with multiple islet autoantibodies in the TEDDY family prevention study - TEFA

Maria Månsson Martinez, Lampros Spiliopoulos, Falastin Salami, Daniel Agardh, Jorma Toppari, Åke Lernmark, Jukka Kero, Riitta Veijola, Päivi Tossavainen, Sauli Palmu, Markus Lundgren, Henrik Borg, Anastasia Katsarou, Helena Elding Larsson, Mikael Knip, Marlena Maziarz, Carina Törn, and the TEDDY-Family (TEFA) Study Group, Anita Ramelius, Ida Jönsson, Rasmus Bennet, Birgitta Sjöberg, Åsa Wimar, Jessica Melin, Maria Ask, Anne Wallin, Monika Hansen, Susanne Hyberg, Karin Ottosson, Jenny Bremer, Ulla-Marie Carlsson, Ulrika Ulvenhag, Anette Sjöberg, Marielle Lindström, Lina Fransson, Fredrik Johansen, Kobra Rahmati, Zeliha Mestan, Evelyn Tekum-Amboh, Silvija Jovic, Joanna Gerardsson, Emelie Ericson-Hallström, Sofie Åberg, Sara Sibthorpe, Elina Mäntymäki, Sini Vainionpää, Minna Romo, Zhian Othmani, Eeva Varjonen, Sanna Jokipuu, Satu Ruohonen, Laura Leppänen, Petra Rajala, Eija Riski, Miia Kähönen, Minna-Liisa Koivikko, Tea Joensuu, Heidi Alanen, Teija Mykkänen, Tiina Latva-Aho, Minna-Liisa Koivikko, Aino Stenius, Paula Ollikainen, Marika Korpela, Katja Multasuo, Päivi Salmijärvi, Pieta Kemppainen, Merja Runtti, Riitta Päkkilä, Irene Viinikangas, Sinikka Pietikäinen, Tuula Arkkola, Maria Månsson Martinez, Lampros Spiliopoulos, Falastin Salami, Daniel Agardh, Jorma Toppari, Åke Lernmark, Jukka Kero, Riitta Veijola, Päivi Tossavainen, Sauli Palmu, Markus Lundgren, Henrik Borg, Anastasia Katsarou, Helena Elding Larsson, Mikael Knip, Marlena Maziarz, Carina Törn, and the TEDDY-Family (TEFA) Study Group, Anita Ramelius, Ida Jönsson, Rasmus Bennet, Birgitta Sjöberg, Åsa Wimar, Jessica Melin, Maria Ask, Anne Wallin, Monika Hansen, Susanne Hyberg, Karin Ottosson, Jenny Bremer, Ulla-Marie Carlsson, Ulrika Ulvenhag, Anette Sjöberg, Marielle Lindström, Lina Fransson, Fredrik Johansen, Kobra Rahmati, Zeliha Mestan, Evelyn Tekum-Amboh, Silvija Jovic, Joanna Gerardsson, Emelie Ericson-Hallström, Sofie Åberg, Sara Sibthorpe, Elina Mäntymäki, Sini Vainionpää, Minna Romo, Zhian Othmani, Eeva Varjonen, Sanna Jokipuu, Satu Ruohonen, Laura Leppänen, Petra Rajala, Eija Riski, Miia Kähönen, Minna-Liisa Koivikko, Tea Joensuu, Heidi Alanen, Teija Mykkänen, Tiina Latva-Aho, Minna-Liisa Koivikko, Aino Stenius, Paula Ollikainen, Marika Korpela, Katja Multasuo, Päivi Salmijärvi, Pieta Kemppainen, Merja Runtti, Riitta Päkkilä, Irene Viinikangas, Sinikka Pietikäinen, Tuula Arkkola

Abstract

Background: Individuals with multiple islet autoantibodies are at increased risk for clinical type 1 diabetes and may proceed gradually from stage to stage complicating the recruitment to secondary prevention studies. We evaluated multiple islet autoantibody positive subjects before randomisation for a clinical trial 1 month apart for beta-cell function, glucose metabolism and continuous glucose monitoring (CGM). We hypothesized that the number and type of islet autoantibodies in combination with different measures of glucose metabolism including fasting glucose, HbA1c, oral glucose tolerance test (OGTT), intra venous glucose tolerance test (IvGTT) and CGM allows for more precise staging of autoimmune type 1 diabetes than the number of islet autoantibodies alone.

Methods: Subjects (n = 57) at 2-50 years of age, positive for two or more islet autoantibodies were assessed by fasting plasma insulin, glucose, HbA1c as well as First Phase Insulin Response (FPIR) in IvGTT, followed 1 month later by OGTT, and 1 week of CGM (n = 24).

Results: Autoantibodies against GAD65 (GADA; n = 52), ZnT8 (ZnT8A; n = 40), IA-2 (IA-2A; n = 38) and insulin (IAA; n = 28) were present in 9 different combinations of 2-4 autoantibodies. Fasting glucose and HbA1c did not differ between the two visits. The estimate of the linear relationship between log2-transformed FPIR as the outcome and log2-transformed area under the OGTT glucose curve (AUC) as the predictor, adjusting for age and sex was - 1.88 (- 2.71, - 1.05) p = 3.49 × 10-5. The direction of the estimates for all glucose metabolism measures was positive except for FPIR, which was negative. FPIR was associated with higher blood glucose. Both the median and the spread of the CGM glucose data were significantly associated with higher glucose values based on OGTT, higher HbA1c, and lower FPIR. There was no association between glucose metabolism, autoantibody number and type except that there was an indication that the presence of at least one of ZnT8(Q/R/W) A was associated with a lower log2-transformed FPIR (- 0.80 (- 1.58, - 0.02), p = 0.046).

Conclusions: The sole use of two or more islet autoantibodies as inclusion criterion for Stage 1 diabetes in prevention trials is unsatisfactory. Staging type 1 diabetes needs to take the heterogeneity in beta-cell function and glucose metabolism into account.

Trial registration: ClinicalTrials.gov identifier: NCT02605148 , November 16, 2015.

Keywords: Continuous glucose monitoring; Glucose metabolism; Islet autoantibodies; beta-cell function.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
The distribution of fasting glucose (mmol/L) (1A) and HbA1c (mmol/mol) (1B) at visits 1 and 2 (n = 57). The boxplot indicates the median, the interquartile range, the violin around the boxplot shows the shape of the distribution of values at each visit, with individual data points shown in grey. The fasting glucose was measured 10 min before the start of IvGTT at visit 1 and OGTT at visit 2. The dashed lines at 7 mmol/L in 1A and at 42 mmol/mol in 1B indicate the World Health Organization thresholds above which subject is considered to be diabetic. Fasting glucose measurements were not found to differ between visits 1 and 2, nor did HbA1c at visits 1 and 2 (Wilcoxon test p-value 0.99 and 0.27, respectively)
Fig. 2
Fig. 2
Assessment of glucose metabolism based on OGTT (2A and B), IvGTT (2B) (n = 57) and CGM (2C) (n = 24). In panel 2A we show the individual trajectories of blood glucose measured using a 2-h OGTT test at visit 2. Based on glucose values at minute 120, we identified 7 subjects (labelled with red and orange subject labels) would be considered to have impaired glucose tolerance (orange labels) or to have clinical type 1 diabetes (red labels) according to the World Health Organization (see grey panel in 2A). In panel 2B we show a scatterplot and a regression line between the log2-transformed area under the curve (AUC) of OGTT glucose measurements versus the log2-transformed FPIR measurements from IvGTT at visit 1. The subjects labelled in orange and red correspond to those in panel 2A. In panel 2C we present the distributions of the glucose measurements obtained from the Continuous Glucose Monitor (CGM) over a 7-day period starting at visit 2. The subjects were sorted according to an increasing median glucose value. The individual glucose measurements are shown as points, with the boxplots showing the median and interquartile range, and the violin plot showing the distribution of the CGM glucose values for a given individual. The subjects shown in orange and red correspond to those in panels 2A and 2B
Fig. 3
Fig. 3
FPIR (mU/L) levels and autoantibody status. The distribution of log2-transformed first-phase insulin response (FPIR) (mU/L) stratified by presence of IAA, GADA, IA-2A or ZnT8(Q/R/Q)A (n = 57). The boxplot indicates the median, the interquartile range, the violin around the boxplot shows the shape of the distribution, with individual data points shown in grey. Based on the model in Table 3 with the status of the four antibodies as the main predictor, adjusted for age and sex, log2(FPIR) was not found to be statistically significantly different depending on the status of IAA, GADA or IA-2A (p = 0.564, 0.637, 0.262), but there was some evidence suggesting that FPIR is lower for those with at least one of ZnT8(Q/R/W)A present compared to those with no ZnT8(Q/R/W)A (1.74 mU/L lower (95% CI = 1.01, 2.99), p = 0.046)

References

    1. Sioofy-Khojine AB, Lehtonen J, Nurminen N, Laitinen OH, Oikarinen S, Huhtala H, Pakkanen O, Ruokoranta T, Hankaniemi MM, Toppari J, et al. Coxsackievirus B1 infections are associated with the initiation of insulin-driven autoimmunity that progresses to type 1 diabetes. Diabetologia. 2018;61(5):1193–1202. doi: 10.1007/s00125-018-4561-y.
    1. Vehik K, Lynch KF, Wong MC, Tian X, Ross MC, Gibbs RA, Ajami NJ, Petrosino JF, Rewers M, Toppari J, et al. Prospective virome analyses in young children at increased genetic risk for type 1 diabetes. Nat Med. 2019;25(12):1865–1872. doi: 10.1038/s41591-019-0667-0.
    1. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark A, Hagopian WA, Rewers MJ, She JX, Simell OG, Toppari J, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58(5):980–987. doi: 10.1007/s00125-015-3514-y.
    1. Ilonen J, Hammais A, Laine AP, Lempainen J, Vaarala O, Veijola R, Simell O, Knip M. Patterns of beta-cell autoantibody appearance and genetic associations during the first years of life. Diabetes. 2013;62(10):3636–3640. doi: 10.2337/db13-0300.
    1. Krischer JP, Liu X, Vehik K, Akolkar B, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Lernmark A, et al. Predicting islet cell autoimmunity and type 1 diabetes: an 8-year TEDDY study Progress report. Diabetes Care. 2019;42(6):1051–1060. doi: 10.2337/dc18-2282.
    1. Vehik K, Bonifacio E, Lernmark Å, Yu L, Williams A, Schatz D, Rewers M, She JX, Toppari J, Hagopian W, et al. Hierarchical order of distinct autoantibody spreading and progression to type 1 diabetes in the TEDDY study. Diabetes Care. 2020;43(9):2066–2073. doi: 10.2337/dc19-2547.
    1. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, Winkler C, Ilonen J, Veijola R, Knip M, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–2479. doi: 10.1001/jama.2013.6285.
    1. Koskinen MK, Helminen O, Matomäki J, Aspholm S, Mykkänen J, Mäkinen M, Simell V, Vähä-Mäkilä M, Simell T, Ilonen J, et al. Reduced β-cell function in early preclinical type 1 diabetes. Eur J Endocrinol. 2016;174(3):251–259. doi: 10.1530/EJE-15-0674.
    1. Koskinen MK, Lempainen J, Löyttyniemi E, Helminen O, Hekkala A, Härkönen T, Kiviniemi M, Simell O, Knip M, Ilonen J, et al. Class II HLA genotype Association with first-phase insulin response is explained by islet autoantibodies. J Clin Endocrinol Metab. 2018;103(8):2870–2878. doi: 10.1210/jc.2017-02040.
    1. Koskinen MK, Mikk ML, Laine AP, Lempainen J, Löyttyniemi E, Vähäsalo P, Hekkala A, Härkönen T, Kiviniemi M, Simell O, et al. Longitudinal pattern of first-phase insulin response is associated with genetic variants outside the class II HLA region in children with multiple autoantibodies. Diabetes. 2020;69(1):12–19. doi: 10.2337/db19-0329.
    1. Notkins AL, Lernmark Å. Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest. 2001;108(9):1247–1252. doi: 10.1172/JCI14257.
    1. Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, Rewers M, Eisenbarth GS, Jensen J, Davidson HW, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007;104(43):17040–17045. doi: 10.1073/pnas.0705894104.
    1. Wherrett DK, Chiang JL, Delamater AM, DiMeglio LA, Gitelman SE, Gottlieb PA, Herold KC, Lovell DJ, Orchard TJ, Ryan CM, et al. Defining pathways for development of disease-modifying therapies in children with type 1 diabetes: a consensus report. Diabetes Care. 2015;38(10):1975–1985. doi: 10.2337/dc15-1429.
    1. Martinez MM, Salami F, Larsson HE, Toppari J, Lernmark Å, Kero J, Veijola R, Koskenniemi JJ, Tossavainen P, Lundgren M, et al. Beta cell function in participants with single or multiple islet autoantibodies at baseline in the TEDDY family prevention study: TEFA. Endocrinol Diabetes Metab. 2021;4(2):e00198.
    1. Andersson C, Carlsson A, Cilio C, Cedervall E, Ivarsson SA, Jonsdottir B, Jönsson B, Larsson K, Neiderud J, Lernmark A, et al. Glucose tolerance and beta-cell function in islet autoantibody-positive children recruited to a secondary prevention study. Pediatr Diabetes. 2013;14(5):341–349. doi: 10.1111/pedi.12023.
    1. Hagopian WA, Erlich H, Lernmark A, Rewers M, Ziegler AG, Simell O, Akolkar B, Vogt R, Blair A, Ilonen J, et al. The environmental determinants of diabetes in the young (TEDDY): genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr Diabetes. 2011;12(8):733–743. doi: 10.1111/j.1399-5448.2011.00774.x.
    1. Vehik K, Fiske SW, Logan CA, Agardh D, Cilio CM, Hagopian W, Simell O, Roivainen M, She JX, Briese T, et al. Methods, quality control and specimen management in an international multicentre investigation of type 1 diabetes: TEDDY. Diabetes Metab Res Rev. 2013;29(7):557–567.
    1. Lampasona V, Pittman DL, Williams AJ, Achenbach P, Schlosser M, Akolkar B, Winter WE, Laboratories P. Islet autoantibody standardization program 2018 workshop: Interlaboratory comparison of glutamic acid decarboxylase autoantibody assay performance. Clin Chem. 2019;65(9):1141–1152. doi: 10.1373/clinchem.2019.304196.
    1. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2192. doi: 10.2337/diacare.21.12.2191.
    1. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–1495. doi: 10.2337/diacare.27.6.1487.
    1. Association AD. Abridged for primary care providers. Clin Diabetes. 2021;39(1):14–43. doi: 10.2337/cd21-as01.
    1. Larsson HE, Lynch K, Lernmark B, Hansson G, Lernmark A, Ivarsson SA. Relationship between increased relative birthweight and infections during pregnancy in children with a high-risk diabetes HLA genotype. Diabetologia. 2007;50(6):1161–1169. doi: 10.1007/s00125-007-0648-6.
    1. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, Gitelman SE, Gottlieb PA, Krischer JP, Linsley PS, et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–613. doi: 10.1056/NEJMoa1902226.
    1. Delli AJ, Vaziri-Sani F, Lindblad B, Elding-Larsson H, Carlsson A, Forsander G, Ivarsson SA, Ludvigsson J, Kockum I, Marcus C, et al. Zinc transporter 8 autoantibodies and their association with SLC30A8 and HLA-DQ genes differ between immigrant and Swedish patients with newly diagnosed type 1 diabetes in the better diabetes diagnosis study. Diabetes. 2012;61(10):2556–2564. doi: 10.2337/db11-1659.
    1. Nielsen LB, Vaziri-Sani F, Pörksen S, Andersen ML, Svensson J, Bergholdt R, Pociot F, Hougaard P, de Beaufort C, Castaño L, et al. Relationship between ZnT8Ab, the SLC30A8 gene and disease progression in children with newly diagnosed type 1 diabetes. Autoimmunity. 2011;44(8):616–623. doi: 10.3109/08916934.2011.576724.
    1. Brorsson C, Vaziri-Sani F, Bergholdt R, Eising S, Nilsson A, Svensson J, Lernmark Å, Pociot F. Diabetes DSGoC: correlations between islet autoantibody specificity and the SLC30A8 genotype with HLA-DQB1 and metabolic control in new onset type 1 diabetes. Autoimmunity. 2011;44(2):107–114. doi: 10.3109/08916934.2010.509120.
    1. Salonen KM, Ryhänen S, Härkönen T, Ilonen J, Knip M, Register FPD. Autoantibodies against zinc transporter 8 are related to age, metabolic state and HLA DR genotype in children with newly diagnosed type 1 diabetes. Diabetes Metab Res Rev. 2013;29(8):646–654. doi: 10.1002/dmrr.2440.
    1. Andersson C, Larsson K, Vaziri-Sani F, Lynch K, Carlsson A, Cedervall E, Jönsson B, Neiderud J, Månsson M, Nilsson A, et al. The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes. Autoimmunity. 2011;44(5):394–405. doi: 10.3109/08916934.2010.540604.
    1. Gorus FK, Balti EV, Vermeulen I, Demeester S, Van Dalem A, Costa O, Dorchy H, Tenoutasse S, Mouraux T, De Block C, et al. Screening for insulinoma antigen 2 and zinc transporter 8 autoantibodies: a cost-effective and age-independent strategy to identify rapid progressors to clinical onset among relatives of type 1 diabetic patients. Clin Exp Immunol. 2013;171(1):82–90. doi: 10.1111/j.1365-2249.2012.04675.x.
    1. Long AE, Gooneratne AT, Rokni S, Williams AJ, Bingley PJ. The role of autoantibodies to zinc transporter 8 in prediction of type 1 diabetes in relatives: lessons from the European Nicotinamide diabetes intervention trial (ENDIT) cohort. J Clin Endocrinol Metab. 2012;97(2):632–637. doi: 10.1210/jc.2011-1952.
    1. Sosenko JM, Skyler JS, Palmer JP, Krischer JP, Yu L, Mahon J, Beam CA, Boulware DC, Rafkin L, Schatz D, et al. The prediction of type 1 diabetes by multiple autoantibody levels and their incorporation into an autoantibody risk score in relatives of type 1 diabetic patients. Diabetes Care. 2013;36(9):2615–2620. doi: 10.2337/dc13-0425.
    1. Ilonen J, Lempainen J, Hammais A, Laine AP, Härkönen T, Toppari J, Veijola R, Knip M, Register FPD. Primary islet autoantibody at initial seroconversion and autoantibodies at diagnosis of type 1 diabetes as markers of disease heterogeneity. Pediatr Diabetes. 2018;19(2):284–292. doi: 10.1111/pedi.12545.
    1. Hao W, Woodwyk A, Beam C, Bahnson HT, Palmer JP, Greenbaum CJ. Assessment of β cell mass and function by AIRmax and intravenous glucose in high-risk subjects for type 1 diabetes. J Clin Endocrinol Metab. 2017;102(12):4428–4434. doi: 10.1210/jc.2017-01713.
    1. Veijola R, Koskinen M, Helminen O, Hekkala A. Dysregulation of glucose metabolism in preclinical type 1 diabetes. Pediatr Diabetes. 2016;17(Suppl 22):25–30. doi: 10.1111/pedi.12392.
    1. Elding Larsson H, Larsson C, Lernmark Å. Group D-is: baseline heterogeneity in glucose metabolism marks the risk for type 1 diabetes and complicates secondary prevention. Acta Diabetol. 2015;52(3):473–481. doi: 10.1007/s00592-014-0680-1.
    1. Siljander HT, Hermann R, Hekkala A, Lähde J, Tanner L, Keskinen P, Ilonen J, Simell O, Veijola R, Knip M. Insulin secretion and sensitivity in the prediction of type 1 diabetes in children with advanced β-cell autoimmunity. Eur J Endocrinol. 2013;169(4):479–485. doi: 10.1530/EJE-13-0206.

Source: PubMed

3
Subscribe