The challenge of translating ischemic conditioning from animal models to humans: the role of comorbidities

Kieran McCafferty, Suzanne Forbes, Christoph Thiemermann, Muhammad M Yaqoob, Kieran McCafferty, Suzanne Forbes, Christoph Thiemermann, Muhammad M Yaqoob

Abstract

Following a period of ischemia (local restriction of blood supply to a tissue), the restoration of blood supply to the affected area causes significant tissue damage. This is known as ischemia-reperfusion injury (IRI) and is a central pathological mechanism contributing to many common disease states. The medical complications caused by IRI in individuals with cerebrovascular or heart disease are a leading cause of death in developed countries. IRI is also of crucial importance in fields as diverse as solid organ transplantation, acute kidney injury and following major surgery, where post-operative organ dysfunction is a major cause of morbidity and mortality. Given its clinical impact, novel interventions are urgently needed to minimize the effects of IRI, not least to save lives but also to reduce healthcare costs. In this Review, we examine the experimental technique of ischemic conditioning, which entails exposing organs or tissues to brief sub-lethal episodes of ischemia and reperfusion, before, during or after a lethal ischemic insult. This approach has been found to confer profound tissue protection against IRI. We discuss the translation of ischemic conditioning strategies from bench to bedside, and highlight where transition into human clinical studies has been less successful than in animal models, reviewing potential reasons for this. We explore the challenges that preclude more extensive clinical translation of these strategies and emphasize the role that underlying comorbidities have in altering the efficacy of these strategies in improving patient outcomes.

Keywords: Comorbidities; Ischemic postconditioning; Ischemic preconditioning; Remote ischemic preconditioning.

© 2014. Published by The Company of Biologists Ltd.

Figures

Fig. 1.
Fig. 1.
Schematic diagram of IPC, iPOST and RIPC protocols. Schematic representation of the differing protocols of ischemic conditioning: light blue represents pre-ischemia; black the ischemic insult; black lines represent the application of sub-lethal ischemia; dark blue the reperfusion phase. (a) Ischemia-reperfusion with no ischemic conditioning. (b) Ischemic preconditioning (IPC), with sub-lethal ischemia applied before the insult (black lines). (c) Ischemic post-conditioning (iPOST), with sub-lethal ischemia applied after the insult (black lines). (d) Remote ischemic preconditioning (RIPC), where the sub-lethal ischemia is applied distal to and prior to the area and time of ischemia. (e) Remote ischemic post-conditioning, where the sub-lethal ischemia is applied distal to and subsequent to the area and time of ischemia.
Box 2 Fig.
Box 2 Fig.
Source data derived from: Bromage et al., 2014; Giricz et al., 2014; Hausenloy, 2013; Lecour, 2009; Sluijter et al., 2014. Abbreviations: Akt, serine/threonine protein kinase, also known as protein kinase B (PKB); Bcl-2, B-cell lymphoma 2 gene; BAD, Bcl-2-associated death promoter; BAX, BCL2-associated X protein; eNOS, endothelial nitric oxide synthase; ERK 1/2, extracellular signal regulated kinases 1/2; G-PCR, G-protein coupled receptor; GSK3β, glycogen synthase kinase-3β; iNOS, inducible nitric oxide synthase; JAK, Janus kinase; KATP, mitochondrial potassium ATP channel; MEK1/2, mitogen-activated protein kinase kinase; MPTP, mitochondrial permeability transition pore; PI3K, phosphatidylinositol-(4,5)-bisphosphate 3-kinase; PKCε, protein kinase Cε; PKG, cGMP-dependent protein kinase; ROS, reactive oxygen species; SDF-1α; stromal-cell-derived factor 1α; STAT3, signal transducer and activator of transcription 3; SR, sarcoplasmic reticulum; TNFα, tumour necrosis factor α; TNF-R, TNF receptor.
Fig. 2.
Fig. 2.
Challenges and potential solutions to translating ischemic conditioning studies from ‘bench to bedside’. Flowchart summarizing the main challenges related to the testing of ischemic conditioning strategies in animal studies (preclinical stage) and to the translation of these approaches into clinical trials (early translation stage, Phase I/II trials). Possible solutions to optimize both the preclinical research stage and the planning of clinical trials are also shown. Should a particular strategy of ischemic conditioning successfully pass the Phase I/II clinical trial phases, future challenges to wider diffusion (late translation stage) include the need for guideline development and adoption of standardized protocols by national and international guideline bodies.

References

    1. Abbott R. D., Donahue R. P., Kannel W. B., Wilson P. W. (1988). The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA 260, 3456–3460.
    1. Abdelnoor M., Sandven I., Limalanathan S., Eritsland J. (2014). Postconditioning in ST-elevation myocardial infarction: a systematic review, critical appraisal, and meta-analysis of randomized clinical trials. Vasc. Health Risk Manag. 10, 477–491.
    1. Abete P., Ferrara N., Cioppa A., Ferrara P., Bianco S., Calabrese C., Cacciatore F., Longobardi G., Rengo F. (1996). Preconditioning does not prevent postischemic dysfunction in aging heart. J. Am. Coll. Cardiol. 27, 1777–1786.
    1. Abete P., Ferrara N., Cacciatore F., Madrid A., Bianco S., Calabrese C., Napoli C., Scognamiglio P., Bollella O., Cioppa A., et al. (1997). Angina-induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart? J. Am. Coll. Cardiol. 30, 947–954.
    1. Abete P., Ferrara N., Cacciatore F., Sagnelli E., Manzi M., Carnovale V., Calabrese C., de Santis D., Testa G., Longobardi G., et al. (2001). High level of physical activity preserves the cardioprotective effect of preinfarction angina in elderly patients. J. Am. Coll. Cardiol. 38, 1357–1365.
    1. Ali Z. A., Callaghan C. J., Lim E., Ali A. A., Nouraei S. A., Akthar A. M., Boyle J. R., Varty K., Kharbanda R. K., Dutka D. P., et al. (2007). Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation 116 Suppl., I98–I105.
    1. Anderson P. G., Bishop S. P., Digerness S. B. (1987). Transmural progression of morphologic changes during ischemic contracture and reperfusion in the normal and hypertrophied rat heart. Am. J. Pathol. 129, 152–167.
    1. Baker J. E. (2005). Erythropoietin mimics ischemic preconditioning. Vascul. Pharmacol. 42, 233–241.
    1. Bartling B., Friedrich I., Silber R. E., Simm A. (2003). Ischemic preconditioning is not cardioprotective in senescent human myocardium. Ann. Thorac. Surg. 76, 105–111.
    1. Boengler K., Buechert A., Heinen Y., Roeskes C., Hilfiker-Kleiner D., Heusch G., Schulz R. (2008). Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice. Circ. Res. 102, 131–135.
    1. Bøtker H. E., Kaltoft A. K., Pedersen S. F., Kim W. Y. (2012). Measuring myocardial salvage. Cardiovasc. Res. 94, 266–275.
    1. Bouhidel O., Pons S., Souktani R., Zini R., Berdeaux A., Ghaleh B. (2008). Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am. J. Physiol. 295, H1580–H1586.
    1. Boutros A., Wang J. (1995). Ischemic preconditioning, adenosine and bethanechol protect spontaneously hypertensive isolated rat hearts. J. Pharmacol. Exp. Ther. 275, 1148–1156.
    1. Brevoord D., Kranke P., Kuijpers M., Weber N., Hollmann M., Preckel B. (2012). Remote ischemic conditioning to protect against ischemia-reperfusion injury: a systematic review and meta-analysis. PLoS ONE 7, e42179.
    1. Bromage D. I., Davidson S. M., Yellon D. M. (2014). Stromal derived factor 1α: a chemokine that delivers a two-pronged defence of the myocardium. Pharmacol. Ther. 143, 305–315.
    1. Burns P. G., Krunkenkamp I. B., Calderone C. A., Kirvaitis R. J., Gaudette G. R., Levitsky S. (1996). Is the preconditioning response conserved in senescent myocardium? Ann. Thorac. Surg. 61, 925–929.
    1. Byrne C. J., McCafferty K., Kieswich J., Harwood S., Andrikopoulos P., Raftery M., Thiemermann C., Yaqoob M. M. (2012). Ischemic conditioning protects the uremic heart in a rodent model of myocardial infarction. Circulation 125, 1256–1265.
    1. Carr C. S., Hill R. J., Masamune H., Kennedy S. P., Knight D. R., Tracey W. R., Yellon D. M. (1997). Evidence for a role for both the adenosine A1 and A3 receptors in protection of isolated human atrial muscle against simulated ischaemia. Cardiovasc. Res. 36, 52–59.
    1. CDC (2014). National Diabetes Statistics Report. Atlanta, GA: Centers for Disease Control and Prevention.
    1. Christian T. F., Schwartz R. S., Gibbons R. J. (1992). Determinants of infarct size in reperfusion therapy for acute myocardial infarction. Circulation 86, 81–90.
    1. Claeys M. J., Vrints C. J., Bosmans J. M., Conraads V. M., Snoeck J. P. (1996). Aminophylline inhibits adaptation to ischaemia during angioplasty. Role of adenosine in ischaemic preconditioning. Eur. Heart J. 17, 539–544.
    1. Cleveland J. C., Jr, Meldrum D. R., Cain B. S., Banerjee A., Harken A. H. (1997). Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium. Two paradoxes revisited. Circulation 96, 29–32.
    1. Cochrane J., Williams B. T., Banerjee A., Harken A. H., Burke T. J., Cairns C. B., Shapiro J. I. (1999). Ischemic preconditioning attenuates functional, metabolic, and morphologic injury from ischemic acute renal failure in the rat. Ren. Fail. 21, 135–145.
    1. Crisostomo P. R., Wang M., Wairiuko G. M., Terrell A. M., Meldrum D. R. (2006). Postconditioning in females depends on injury severity. J. Surg. Res. 134, 342–347.
    1. Csont T., Balogh G., Csonka C., Boros I., Horváth I., Vigh L., Ferdinandy P. (2002). Hyperlipidemia induced by high cholesterol diet inhibits heat shock response in rat hearts. Biochem. Biophys. Res. Commun. 290, 1535–1538.
    1. Davies W. R., Brown A. J., Watson W., McCormick L. M., West N. E., Dutka D. P., Hoole S. P. (2013). Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circ. Cardiovasc. Interv. 6, 246–251.
    1. del Valle H. F., Lascano E. C., Negroni J. A. (2002). Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. Cardiovasc. Res. 55, 642–659.
    1. Demerouti E., Andreadou I., Aggeli I. K., Farmakis D., Zoga A., Gaitanaki C., Beis I., Anastasiou-Nana M., Kremastinos D. T., Iliodromitis E. K. (2013). Ovariectomy reinstates the infarct size-limiting effect of postconditioning in female rabbits. Cell Biochem. Biophys. 65, 373–380.
    1. Dikow R., Kihm L. P., Zeier M., Kapitza J., Törnig J., Amann K., Tiefenbacher C., Ritz E. (2004). Increased infarct size in uremic rats: reduced ischemia tolerance? J. Am. Soc. Nephrol. 15, 1530–1536.
    1. Donato M., D’Annunzio V., Berg G., Gonzalez G., Schreier L., Morales C., Wikinski R. L., Gelpi R. J. (2007). Ischemic postconditioning reduces infarct size by activation of A1 receptors and K+(ATP) channels in both normal and hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol. 49, 287–292.
    1. Drazner M. H. (2011). The progression of hypertensive heart disease. Circulation 123, 327–334.
    1. Ebrahim Z., Yellon D. M., Baxter G. F. (2007). Ischemic preconditioning is lost in aging hypertensive rat heart: independent effects of aging and longstanding hypertension. Exp. Gerontol. 42, 807–814.
    1. Ebrahimi S. M., Aboutaleb N., Nobakht M. (2012). Consequences of ischemic preconditioning of kidney: comparing between male and female rats. Iran. J. Basic Med. Sci. 15, 1148–1153.
    1. Eisenberg D. A. (1998). Cholesterol lowering in the management of coronary artery disease: the clinical implications of recent trials. Am. J. Med. 104, 2S–5S.
    1. Er F., Nia A. M., Dopp H., Hellmich M., Dahlem K. M., Caglayan E., Kubacki T., Benzing T., Erdmann E., Burst V., et al. (2012). Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation 126, 296–303.
    1. Fenton R. A., Dickson E. W., Meyer T. E., Dobson J. G., Jr (2000). Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J. Mol. Cell. Cardiol. 32, 1371–1375.
    1. Ferdinandy P., Szilvassy Z., Baxter G. F. (1998). Adaptation to myocardial stress in disease states: is preconditioning a healthy heart phenomenon? Trends Pharmacol. Sci. 19, 223–229.
    1. Ford E. S., Li C., Pearson W. S., Zhao G., Mokdad A. H. (2010). Trends in hypercholesterolemia, treatment and control among United States adults. Int. J. Cardiol. 140, 226–235.
    1. Franco O. H., Steyerberg E. W., Hu F. B., Mackenbach J., Nusselder W. (2007). Associations of diabetes mellitus with total life expectancy and life expectancy with and without cardiovascular disease. Arch. Intern. Med. 167, 1145–1151.
    1. Gansevoort R. T., Correa-Rotter R., Hemmelgarn B. R., Jafar T. H., Heerspink H. J., Mann J. F., Matsushita K., Wen C. P. (2013). Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet 382, 339–352.
    1. Ghoorah K., Campbell P., Kent A., Maznyczka A., Kunadian V. (2014). Obesity and cardiovascular outcomes: a review. Eur. Heart J. Acute Cardiovasc. Care [Epub ahead of print] 10.1177/2048872614523349.
    1. Giricz Z., Lalu M. M., Csonka C., Bencsik P., Schulz R., Ferdinandy P. (2006). Hyperlipidemia attenuates the infarct size-limiting effect of ischemic preconditioning: role of matrix metalloproteinase-2 inhibition. J. Pharmacol. Exp. Ther. 316, 154–161.
    1. Giricz Z., Varga Z. V., Baranyai T., Sipos P., Pálóczi K., Kittel Á., Buzás E. I., Ferdinandy P. (2014). Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J. Mol. Cell. Cardiol. 68, 75–78.
    1. Go A. S., Bauman M., Coleman King S. M., Fonarow G. C., Lawrence W., Williams K. A., Sanchez E. (2013a). An effective approach to high blood pressure control: a scientific advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. Hypertension 63, 878–885
    1. Go A. S., Mozaffarian D., Roger V. L., Benjamin E. J., Berry J. D., Borden W. B., Bravata D. M., Dai S., Ford E. S., Fox C. S., et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2013b). Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation 127, e6–e245.
    1. Gross E. R., Hsu A. K., Gross G. J. (2007). Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56, 127–136.
    1. Gu W., Kehl F., Krolikowski J. G., Pagel P. S., Warltier D. C., Kersten J. R. (2008). Simvastatin restores ischemic preconditioning in the presence of hyperglycemia through a nitric oxide-mediated mechanism. Anesthesiology 108, 634–642.
    1. Haffner S. M., Lehto S., Rönnemaa T., Pyörälä K., Laakso M. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234.
    1. Hardy K. J., McClure D. N., Subwongcharoen S. (1996). Ischaemic preconditioning of the liver: a preliminary study. Aust. N. Z. J. Surg. 66, 707–710.
    1. Hausenloy D. J. (2013). Cardioprotection techniques: preconditioning, postconditioning and remote conditioning (basic science). Curr. Pharm. Des. 19, 4544–4563.
    1. Hausenloy D. J., Yellon D. M. (2008). Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc. Res. 79, 377–386.
    1. Hausenloy D. J., Wynne A. M., Mocanu M. M., Yellon D. M. (2013). Glimepiride treatment facilitates ischemic preconditioning in the diabetic heart. J. Cardiovasc. Pharmacol. Ther. 18, 263–269.
    1. Hernández-Reséndiz S., Roldán F. J., Correa F., Martínez-Abundis E., Osorio-Valencia G., Ruíz-de-Jesús O., Alexánderson-Rosas E., Vigueras R. M., Franco M., Zazueta C. (2013). Postconditioning protects against reperfusion injury in hypertensive dilated cardiomyopathy by activating MEK/ERK1/2 signaling. J. Card. Fail. 19, 135–146.
    1. Hotta H., Miura T., Miki T., Togashi N., Maeda T., Kim S. J., Tanno M., Yano T., Kuno A., Itoh T., et al. (2010). Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ. Res. 106, 129–132.
    1. Hougaard K. D., Hjort N., Zeidler D., Sørensen L., Nørgaard A., Hansen T. M., von Weitzel-Mudersbach P., Simonsen C. Z., Damgaard D., Gottrup H., et al. (2014). Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke 45, 159–167.
    1. Iliodromitis E. K., Zoga A., Vrettou A., Andreadou I., Paraskevaidis I. A., Kaklamanis L., Kremastinos D. T. (2006). The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis 188, 356–362.
    1. Ishihara M., Inoue I., Kawagoe T., Shimatani Y., Kurisu S., Nishioka K., Kouno Y., Umemura T., Nakamura S., Sato H. (2001). Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J. Am. Coll. Cardiol. 38, 1007–1011.
    1. Jensen H. A., Loukogeorgakis S., Yannopoulos F., Rimpiläinen E., Petzold A., Tuominen H., Lepola P., Macallister R. J., Deanfield J. E., Mäkelä T., et al. (2011). Remote ischemic preconditioning protects the brain against injury after hypothermic circulatory arrest. Circulation 123, 714–721.
    1. Jensen R. V., Støttrup N. B., Kristiansen S. B., Bøtker H. E. (2012). Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Res. Cardiol. 107, 285.
    1. Jensen R. V., Zachara N. E., Nielsen P. H., Kimose H. H., Kristiansen S. B., Bøtker H. E. (2013). Impact of O-GlcNAc on cardioprotection by remote ischaemic preconditioning in non-diabetic and diabetic patients. Cardiovasc. Res. 97, 369–378.
    1. Jiang B., Liu X., Chen H., Liu D., Kuang Y., Xing B., Chen Z. (2010). Ischemic postconditioning attenuates renal ischemic/reperfusion injury in mongrel dogs. Urology 76, 1519.e1–7.
    1. Juhaszova M., Rabuel C., Zorov D. B., Lakatta E. G., Sollott S. J. (2005). Protection in the aged heart: preventing the heart-break of old age? Cardiovasc. Res. 66, 233–244.
    1. Kannel W. B., McGee D. L. (1979). Diabetes and cardiovascular disease. The Framingham study. JAMA 241, 2035–2038.
    1. Kanoria S., Jalan R., Davies N. A., Seifalian A. M., Williams R., Davidson B. R. (2006). Remote ischaemic preconditioning of the hind limb reduces experimental liver warm ischaemia-reperfusion injury. Br. J. Surg. 93, 762–768.
    1. Katakam P. V., Jordan J. E., Snipes J. A., Tulbert C. D., Miller A. W., Busija D. W. (2007). Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am. J. Physiol. 292, R920–R926.
    1. Kersten J. R., Schmeling T. J., Orth K. G., Pagel P. S., Warltier D. C. (1998). Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am. J. Physiol. 275, H721–H725.
    1. Kersten J. R., Toller W. G., Gross E. R., Pagel P. S., Warltier D. C. (2000). Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am. J. Physiol. 278, H1218–H1224.
    1. Khalil R. A. (2013). Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease. Biochem. Pharmacol. 86, 1627–1642.
    1. Kim Y. D., Chen B., Beauregard J., Kouretas P., Thomas G., Farhat M. Y., Myers A. K., Lees D. E. (1996). 17 beta-Estradiol prevents dysfunction of canine coronary endothelium and myocardium and reperfusion arrhythmias after brief ischemia/reperfusion. Circulation 94, 2901–2908.
    1. Kocić I., Dworakowska D., Konstański Z., Dworakowski R. (1998). The influence of experimental hyperlipidemia on the time course of contractility during simulated ischaemia and reperfusion and responsiveness to phenylephrine of rat heart papillary muscle. J. Physiol. Pharmacol. 49, 353–365.
    1. Kocić I., Konstański Z., Kaminski M., Dworakowska D., Dworakowski R. (1999). Experimental hyperlipidemia prevents the protective effect of ischemic preconditioning on the contractility and responsiveness to phenylephrine of rat-isolated stunned papillary muscle. Gen. Pharmacol. 33, 213–219.
    1. Kocsis G. F., Csont T., Varga-Orvos Z., Puskas L. G., Murlasits Z., Ferdinandy P. (2010). Expression of genes related to oxidative/nitrosative stress in mouse hearts: effect of preconditioning and cholesterol diet. Med. Sci. Monit. 16, BR32–BR39.
    1. Kocsis G. F., Sárközy M., Bencsik P., Pipicz M., Varga Z. V., Pálóczi J., Csonka C., Ferdinandy P., Csont T. (2012). Preconditioning protects the heart in a prolonged uremic condition. Am. J. Physiol. 303, H1229–H1236.
    1. Kristiansen S. B., Løfgren B., Støttrup N. B., Khatir D., Nielsen-Kudsk J. E., Nielsen T. T., Bøtker H. E., Flyvbjerg A. (2004). Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia 47, 1716–1721.
    1. Kukreja R. C., Salloum F., Das A., Ockaili R., Yin C., Bremer Y. A., Fisher P. W., Wittkamp M., Hawkins J., Chou E., et al. (2005). Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascul. Pharmacol. 42, 219–232.
    1. Kupai K., Csonka C., Fekete V., Odendaal L., van Rooyen J., Marais W., Csont T., Ferdinandy P. (2009). Cholesterol diet-induced hyperlipidemia impairs the cardioprotective effect of postconditioning: role of peroxynitrite. Am. J. Physiol. 297, H1729–H1735.
    1. Kyriakides Z. S., Psychari S., Iliodromitis E. K., Kolettis T. M., Sbarouni E., Kremastinos D. T. (2002). Hyperlipidemia prevents the expected reduction of myocardial ischemia on repeated balloon inflations during angioplasty. Chest 121, 1211–1215.
    1. Lacerda L., Opie L. H., Lecour S. (2012). Influence of tumour necrosis factor alpha on the outcome of ischaemic postconditioning in the presence of obesity and diabetes. Exp. Diabetes Res. 2012, 502654.
    1. O’Leary H., Kothur A., Fournier S. B., Goodwill A. G., Frisbee J. C., Brock R. W. (2011). Effect of remote ischemic preconditioning on hepatic parenchymal and microvascular damage in obesity. FASEB J. 25, 11179.
    1. Lecour S. (2009). Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J. Mol. Cell. Cardiol. 47, 32–40.
    1. Lee T. M., Chou T. F. (2003). Impairment of myocardial protection in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 88, 531–537.
    1. Lee T. M., Su S. F., Tsai C. C., Lee Y. T., Tsai C. H. (2000). Cardioprotective effects of 17 beta-estradiol produced by activation ofmitochondrial ATP-sensitive K(+)Channels in canine hearts. J. Mol. Cell. Cardiol. 32, 1147–1158.
    1. Li G., Chen S., Lu E., Hu T. (1999). Protective effects of ischemic preconditioning on lung ischemia reperfusion injury: an in-vivo rabbit study. Thorac. Cardiovasc. Surg. 47, 38–41.
    1. Liu M., Zhou B., Xia Z. Y., Zhao B., Lei S. Q., Yang Q. J., Xue R., Leng Y., Xu J. J., Xia Z. (2013). Hyperglycemia-induced inhibition of DJ-1 expression compromised the effectiveness of ischemic postconditioning cardioprotection in rats. Oxid. Med. Cell. Longev. 2013, 564902.
    1. Lorgis L., Gudjoncik A., Richard C., Mock L., Buffet P., Brunel P., Janin-Manificat L., Beer J. C., Brunet D., Touzery C., et al. (2012). Pre-infarction angina and outcomes in non-ST-segment elevation myocardial infarction: data from the RICO survey. PLoS ONE 7, e48513.
    1. Loubani M., Ghosh S., Galiñanes M. (2003). The aging human myocardium: tolerance to ischemia and responsiveness to ischemic preconditioning. J. Thorac. Cardiovasc. Surg. 126, 143–147.
    1. Ludman A. J., Yellon D. M., Hausenloy D. J. (2010). Cardiac preconditioning for ischaemia: lost in translation. Dis. Model. Mech. 3, 35–38.
    1. McLenachan J. M., Henderson E., Morris K. I., Dargie H. J. (1987). Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N. Engl. J. Med. 317, 787–792.
    1. Medi C., Montalescot G., Budaj A., Fox K. A., López-Sendón J., FitzGerald G., Brieger D. B., GRACE Investigators (2009). Reperfusion in patients with renal dysfunction after presentation with ST-segment elevation or left bundle branch block: GRACE (Global Registry of Acute Coronary Events). JACC Cardiovasc. Interv. 2, 26–33.
    1. Meier P., Schirmer S. H., Lansky A. J., Timmis A., Pitt B., Seiler C. (2013). The collateral circulation of the heart. BMC Med. 11, 143.
    1. Mensah K., Mocanu M. M., Yellon D. M. (2005). Failure to protect the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment is recaptured by acute atorvastatin treatment: a potential role for phosphatase and tensin homolog deleted on chromosome ten? J. Am. Coll. Cardiol. 45, 1287–1291.
    1. Moolman J. A., Genade S., Tromp E., Opie L. H., Lochner A. (1997). Ischaemic preconditioning does not protect hypertrophied myocardium against ischaemia. S. Afr. Med. J. 87 Suppl. 3, C151–C156.
    1. Morales-Villegas E. C., Di Sciascio G., Briguori C. (2011). Statins: cardiovascular risk reduction in percutaneous coronary intervention-basic and clinical evidence of hyperacute use of statins. Int. J. Hypertens. 2011, 904742.
    1. Moro L., Pedone C., Mondì A., Nunziata E., Antonelli Incalzi R. (2011). Effect of local and remote ischemic preconditioning on endothelial function in young people and healthy or hypertensive elderly people. Atherosclerosis 219, 750–752.
    1. Murphy G. S., Szokol J. W., Marymont J. H., Avram M. J., Vender J. S. (2006). Opioids and cardioprotection: the impact of morphine and fentanyl on recovery of ventricular function after cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 20, 493–502.
    1. Murry C. E., Jennings R. B., Reimer K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136.
    1. Nieszner E., Posa I., Kocsis E., Pogátsa G., Préda I., Koltai M. Z. (2002). Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp. Clin. Endocrinol. Diabetes 110, 212–218.
    1. Node K., Kitakaze M., Kosaka H., Minamino T., Funaya H., Hori M. (1997). Amelioration of ischemia- and reperfusion-induced myocardial injury by 17beta-estradiol: role of nitric oxide and calcium-activated potassium channels. Circulation 96, 1953–1963.
    1. Oikawa M., Yaoita H., Watanabe K., Maruyama Y. (2008). Attenuation of cardioprotective effect by postconditioning in coronary stenosed rat heart and its restoration by carvedilol. Circ. J. 72, 2081–2086.
    1. Ovize M., Baxter G. F., Di Lisa F., Ferdinandy P., Garcia-Dorado D., Hausenloy D. J., Heusch G., Vinten-Johansen J., Yellon D. M., Schulz R., Working Group of Cellular Biology of Heart of European Society of Cardiology (2010). Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc. Res. 87, 406–423.
    1. Pelzer T., Schumann M., Neumann M., deJager T., Stimpel M., Serfling E., Neyses L. (2000). 17beta-estradiol prevents programmed cell death in cardiac myocytes. Biochem. Biophys. Res. Commun. 268, 192–200.
    1. Penna C., Tullio F., Merlino A., Moro F., Raimondo S., Rastaldo R., Perrelli M. G., Mancardi D., Pagliaro P. (2009). Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res. Cardiol. 104, 390–402.
    1. Penna C., Tullio F., Moro F., Folino A., Merlino A., Pagliaro P. (2010). Effects of a protocol of ischemic postconditioning and/or captopril in hearts of normotensive and hypertensive rats. Basic Res. Cardiol. 105, 181–192.
    1. Piot C., Croisille P., Staat P., Thibault H., Rioufol G., Mewton N., Elbelghiti R., Cung T. T., Bonnefoy E., Angoulvant D., et al. (2008). Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N. Engl. J. Med. 359, 473–481.
    1. Poirier P., Giles T. D., Bray G. A., Hong Y., Stern J. S., Pi-Sunyer F. X., Eckel R. H. (2006). Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler. Thromb. Vasc. Biol. 26, 968–976.
    1. Przyklenk K., Whittaker P. (2013). Genesis of remote conditioning: action at a distance – ‘hypotheses non fingo’? J. Cardiovasc. Med. (Hagerstown) 14, 180–186.
    1. Przyklenk K., Bauer B., Ovize M., Kloner R. A., Whittaker P. (1993). Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87, 893–899.
    1. Przyklenk K., Li G., Whittaker P. (2001). No loss in the in vivo efficacy of ischemic preconditioning in middle-aged and old rabbits. J. Am. Coll. Cardiol. 38, 1741–1747.
    1. Przyklenk K., Maynard M., Darling C. E., Whittaker P. (2008a). Aging mouse hearts are refractory to infarct size reduction with post-conditioning. J. Am. Coll. Cardiol. 51, 1393–1398.
    1. Przyklenk K., Maynard M., Greiner D., Whittaker P. (2008b). Abstract 1905: restoration of normoglycemia re-establishes the infarct-sparing effect of postconditioning in diabetic mice. Circulation Suppl., 118, S402–S403.
    1. Rana A., Goyal N., Ahlawat A., Jamwal S., Reddy B., Sharma S. (2014). Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders. Perfusion.
    1. Ravingerová T., Stetka R., Pancza D., Ulicná O., Ziegelhöffer A., Styk J. (2000). Susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic rat heart. Physiol. Res. 49, 607–616.
    1. Sakai K., Yamagata T., Teragawa H., Matsuura H., Chayama K. (2002). Nicorandil-induced preconditioning as evidenced by troponin T measurements after coronary angioplasty in patients with stable angina pectoris. Jpn. Heart J. 43, 443–453.
    1. Sarwar N., Gao P., Seshasai S. R., Gobin R., Kaptoge S., Di Angelantonio E., Ingelsson E., Lawlor D. A., Selvin E., Stampfer M., et al. Emerging Risk Factors Collaboration (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222.
    1. Sasaki H., Ogawa K., Shimizu M., Mori C., Takatsuka H., Okazaki F., Kawai M., Taniguchi I., Mochizuki S. (2007). The insulin sensitizer pioglitazone improves the deterioration of ischemic preconditioning in type 2 diabetes mellitus rats. Int. Heart J. 48, 623–635.
    1. Sato H., Bolli R., Rokosh G. D., Bi Q., Dai S., Shirk G., Tang X. L. (2007). The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats. Am. J. Physiol. 293, H2557–H2564.
    1. Saxena P., Newman M. A., Shehatha J. S., Redington A. N., Konstantinov I. E. (2010). Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J. Card. Surg. 25, 127–134.
    1. Schott R. J., Rohmann S., Braun E. R., Schaper W. (1990). Ischemic preconditioning reduces infarct size in swine myocardium. Circ. Res. 66, 1133–1142.
    1. Schulman D., Latchman D. S., Yellon D. M. (2001). Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am. J. Physiol. 281, H1630–H1636.
    1. Seiler C. (2010). The human coronary collateral circulation. Eur. J. Clin. Invest. 40, 465–476.
    1. Selzner N., Boehnert M., Selzner M. (2012). Preconditioning, postconditioning, and remote conditioning in solid organ transplantation: basic mechanisms and translational applications. Transplant. Rev. (Orlando) 26, 115–124.
    1. Seok J., Warren H. S., Cuenca A. G., Mindrinos M. N., Baker H. V., Xu W., Richards D. R., McDonald-Smith G. P., Gao H., Hennessy L., et al. Inflammation and Host Response to Injury, Large Scale Collaborative Research Program (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110, 3507–3512.
    1. Shekelle R. B., Shryock A. M., Paul O., Lepper M., Stamler J., Liu S., Raynor W. J., Jr (1981). Diet, serum cholesterol, and death from coronary heart disease. The Western Electric study. N. Engl. J. Med. 304, 65–70.
    1. Shinmura K., Nagai M., Tamaki K., Bolli R. (2008). Loss of ischaemic preconditioning in ovariectomized rat hearts: possible involvement of impaired protein kinase C epsilon phosphorylation. Cardiovasc. Res. 79, 387–394.
    1. Sivaraman V., Hausenloy D. J., Wynne A. M., Yellon D. M. (2010). Preconditioning the diabetic human myocardium. J. Cell. Mol. Med. 14, 1740–1746.
    1. Sluijter J. P., Condorelli G., Davidson S. M., Engel F. B., Ferdinandy P., Hausenloy D. J., Lecour S., Madonna R., Ovize M., Ruiz-Meana M., et al. Nucleus of the European Society of Cardiology Working Group Cellular Biology of the Heart (2014). Novel therapeutic strategies for cardioprotection. Pharmacol. Ther. 144, 60–70.
    1. Smith C. C., Mocanu M. M., Davidson S. M., Wynne A. M., Simpkin J. C., Yellon D. M. (2006). Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br. J. Pharmacol. 149, 5–13.
    1. Smith G. L., Masoudi F. A., Shlipak M. G., Krumholz H. M., Parikh C. R. (2008). Renal impairment predicts long-term mortality risk after acute myocardial infarction. J. Am. Soc. Nephrol. 19, 141–150.
    1. Song X., Li G., Vaage J., Valen G. (2003). Effects of sex, gonadectomy, and oestrogen substitution on ischaemic preconditioning and ischaemia-reperfusion injury in mice. Acta Physiol. Scand. 177, 459–466.
    1. Song X., Zhang N., Xu H., Cao L., Zhang H. (2012). Combined preconditioning and postconditioning provides synergistic protection against liver ischemic reperfusion injury. Int. J. Biol. Sci. 8, 707–718.
    1. Speechly-Dick M. E., Baxter G. F., Yellon D. M. (1994). Ischaemic preconditioning protects hypertrophied myocardium. Cardiovasc. Res. 28, 1025–1029.
    1. Squadrito F., Altavilla D., Squadrito G., Campo G. M., Arlotta M., Arcoraci V., Minutoli L., Serrano M., Saitta A., Caputi A. P. (1997). 17Beta-oestradiol reduces cardiac leukocyte accumulation in myocardial ischaemia reperfusion injury in rat. Eur. J. Pharmacol. 335, 185–192.
    1. Sugishita K., Su Z., Li F., Philipson K. D., Barry W. H. (2001). Gender influences [Ca(2+)](i) during metabolic inhibition in myocytes overexpressing the Na(+)-Ca(2+) exchanger. Circulation 104, 2101–2106.
    1. Sumeray M. S., Yellon D. M. (1998). Ischaemic preconditioning reduces infarct size following global ischaemia in the murine myocardium. Basic Res. Cardiol. 93, 384–390.
    1. Szijártó A., Czigány Z., Turóczi Z., Harsányi L. (2012). Remote ischemic perconditioning – a simple, low-risk method to decrease ischemic reperfusion injury: models, protocols and mechanistic background. A review. J. Surg. Res. 178, 797–806.
    1. Szilvassy Z., Ferdinandy P., Szilvassy J., Nagy I., Karcsu S., Lonovics J., Dux L., Koltai M. (1995). The loss of pacing-induced preconditioning in atherosclerotic rabbits: role of hypercholesterolaemia. J. Mol. Cell. Cardiol. 27, 2559–2569.
    1. Takeuchi T., Ishii Y., Kikuchi K., Hasebe N. (2011). Ischemic preconditioning effect of prodromal angina is attenuated in acute myocardial infarction patients with hypertensive left ventricular hypertrophy. Circ. J. 75, 1192–1199.
    1. Tang X. L., Takano H., Xuan Y. T., Sato H., Kodani E., Dawn B., Zhu Y., Shirk G., Wu W. J., Bolli R. (2005). Hypercholesterolemia abrogates late preconditioning via a tetrahydrobiopterin-dependent mechanism in conscious rabbits. Circulation 112, 2149–2156.
    1. Tani M., Honma Y., Hasegawa H., Tamaki K. (2001). Direct activation of mitochondrial K(ATP) channels mimics preconditioning but protein kinase C activation is less effective in middle-aged rat hearts. Cardiovasc. Res. 49, 56–68.
    1. Tatsumi T., Matoba S., Kobara M., Keira N., Kawahara A., Tsuruyama K., Tanaka T., Katamura M., Nakagawa C., Ohta B., et al. (1998). Energy metabolism after ischemic preconditioning in streptozotocin-induced diabetic rat hearts. J. Am. Coll. Cardiol. 31, 707–715.
    1. Thornton J., Striplin S., Liu G. S., Swafford A., Stanley A. W., Van Winkle D. M., Downey J. M. (1990). Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am. J. Physiol. 259, H1822–H1825.
    1. Tofler G. H., Muller J. E., Stone P. H., Willich S. N., Davis V. G., Poole W. K., Braunwald E. (1988). Factors leading to shorter survival after acute myocardial infarction in patients ages 65 to 75 years compared with younger patients. Am. J. Cardiol. 62, 860–867.
    1. Tomai F., Crea F., Gaspardone A., Versaci F., De Paulis R., Polisca P., Chiariello L., Gioffrè P. A. (1996). Effects of A1 adenosine receptor blockade by bamiphylline on ischaemic preconditioning during coronary angioplasty. Eur. Heart J. 17, 846–853.
    1. Tomai F., Crea F., Gaspardone A., Versaci F., Ghini A. S., De Paulis R., Chiariello L., Gioffrè P. A. (1997). Phentolamine prevents adaptation to ischemia during coronary angioplasty: role of alpha-adrenergic receptors in ischemic preconditioning. Circulation 96, 2171–2177.
    1. Tomai F., Crea F., Gaspardone A., Versaci F., Ghini A. S., Ferri C., Desideri G., Chiariello L., Gioffré P. A. (1999). Effects of naloxone on myocardial ischemic preconditioning in humans. J. Am. Coll. Cardiol. 33, 1863–1869.
    1. Tosaki A., Engelman D. T., Engelman R. M., Das D. K. (1996). The evolution of diabetic response to ischemia/reperfusion and preconditioning in isolated working rat hearts. Cardiovasc. Res. 31, 526–536.
    1. Tsang A., Hausenloy D. J., Mocanu M. M., Carr R. D., Yellon D. M. (2005). Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes 54, 2360–2364.
    1. Tsilidis K. K., Panagiotou O. A., Sena E. S., Aretouli E., Evangelou E., Howells D. W., Al-Shahi Salman R., Macleod M. R., Ioannidis J. P. (2013). Evaluation of excess significance bias in animal studies of neurological diseases. PLoS Biol. 11, e1001609.
    1. Ueda Y., Kitakaze M., Komamura K., Minamino T., Asanuma H., Sato H., Kuzuya T., Takeda H., Hori M. (1999). Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J. Am. Coll. Cardiol. 34, 2120–2125.
    1. Ungi I., Ungi T., Ruzsa Z., Nagy E., Zimmermann Z., Csont T., Ferdinandy P. (2005). Hypercholesterolemia attenuates the anti-ischemic effect of preconditioning during coronary angioplasty. Chest 128, 1623–1628.
    1. Ungi I., Pálinkás A., Nemes A., Ungi T., Thury A., Sepp R., Horváth T., Forster T., Végh A. (2008). Myocardial protection with enalaprilat in patients unresponsive to ischemic preconditioning during percutaneous coronary intervention. Can. J. Physiol. Pharmacol. 86, 827–834.
    1. van den Brandt J., Kovács P., Klöting I. (2000). Metabolic features in disease-resistant as well as in spontaneously hypertensive rats and newly established obese Wistar Ottawa Karlsburg inbred rats. Int. J. Obes. Relat. Metab. Disord. 24, 1618–1622.
    1. Verdouw P. D., van den Doel M. A., de Zeeuw S., Duncker D. J. (1998). Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc. Res. 39, 121–135.
    1. Vinten-Johansen J., Shi W. (2011). Perconditioning and postconditioning: current knowledge, knowledge gaps, barriers to adoption, and future directions. J. Cardiovasc. Pharmacol. Ther. 16, 260–266.
    1. Vinten-Johansen J., Shi W. (2013). The science and clinical translation of remote postconditioning. J. Cardiovasc. Med. (Hagerstown) 14, 206–213.
    1. Voucharas C., Lazou A., Triposkiadis F., Tsilimingas N. (2011). Remote preconditioning in normal and hypertrophic rat hearts. J. Cardiothorac. Surg. 6, 34.
    1. Wagner C., Kloeting I., Strasser R. H., Weinbrenner C. (2008). Cardioprotection by postconditioning is lost in WOKW rats with metabolic syndrome: role of glycogen synthase kinase 3beta. J. Cardiovasc. Pharmacol. 52, 430–437.
    1. Wagner C., Ebner B., Tillack D., Strasser R. H., Weinbrenner C. (2013). Cardioprotection by ischemic postconditioning is abrogated in hypertrophied myocardium of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 61, 35–41.
    1. Wang T. D., Chen W. J., Su S. S., Lo S. C., Lin W. W., Lee Y. T. (2002). Increased cardiomyocyte apoptosis following ischemia and reperfusion in diet-induced hypercholesterolemia: relation to Bcl-2 and Bax proteins and caspase-3 activity. Lipids 37, 385–394.
    1. Wayman N. S., McDonald M. C., Chatterjee P. K., Thiemermann C. (2003). Models of coronary artery occlusion and reperfusion for the discovery of novel antiischemic and antiinflammatory drugs for the heart. Methods Mol. Biol. 225, 199–208.
    1. Wever K. E., Masereeuw R., Wagener F. A., Verweij V. G., Peters J. G., Pertijs J. C., Van der Vliet J. A., Warlé M. C., Rongen G. A. (2013). Humoral signalling compounds in remote ischaemic preconditioning of the kidney, a role for the opioid receptor. Nephrol. Dial. Transplant. 28, 1721–1732.
    1. Xi L., Hess M. L., Kukreja R. C. (1998). Ischemic preconditioning in isolated perfused mouse heart: reduction in infarct size without improvement of post-ischemic ventricular function. Mol. Cell. Biochem. 186, 69–77.
    1. Xin P., Zhu W., Li J., Ma S., Wang L., Liu M., Li J., Wei M., Redington A. N. (2010). Combined local ischemic postconditioning and remote perconditioning recapitulate cardioprotective effects of local ischemic preconditioning. Am. J. Physiol. 298, H1819–H1831.
    1. Yadav H. N., Singh M., Sharma P. L. (2010). Involvement of GSK-3β in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol. Cell. Biochem. 343, 75–81.
    1. Yellon D. M., Alkhulaifi A. M., Browne E. E., Pugsley W. B. (1992). Ischaemic preconditioning limits infarct size in the rat heart. Cardiovasc. Res. 26, 983–987.
    1. Yellon D. M., Alkhulaifi A. M., Pugsley W. B. (1993). Preconditioning the human myocardium. Lancet 342, 276–277.
    1. Yetgin T., Magro M., Manintveld O. C., Nauta S. T., Cheng J. M., den Uil C. A., Simsek C., Hersbach F., van Domburg R. T., Boersma E., et al. (2014). Impact of multiple balloon inflations during primary percutaneous coronary intervention on infarct size and long-term clinical outcomes in ST-segment elevation myocardial infarction: real-world postconditioning. Basic Res. Cardiol. 109, 403.
    1. Zhao Z. Q., Corvera J. S., Halkos M. E., Kerendi F., Wang N. P., Guyton R. A., Vinten-Johansen J. (2003). Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. 285, H579–H588.
    1. Zhao H., Sapolsky R. M., Steinberg G. K. (2006). Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J. Cereb. Blood Flow Metab. 26, 1114–1121.
    1. Zhou C., Yao Y., Zheng Z., Gong J., Wang W., Hu S., Li L. (2012). Stenting technique, gender, and age are associated with cardioprotection by ischaemic postconditioning in primary coronary intervention: a systematic review of 10 randomized trials. Eur. Heart J. 33, 3070–3077.

Source: PubMed

3
Subscribe