Genotypic characterization directly applied to sputum improves the detection of Mycobacterium africanum West African 1, under-represented in positive cultures

C N'Dira Sanoussi, Dissou Affolabi, Leen Rigouts, Séverin Anagonou, Bouke de Jong, C N'Dira Sanoussi, Dissou Affolabi, Leen Rigouts, Séverin Anagonou, Bouke de Jong

Abstract

Background: This study aimed to compare the prevalence of Mycobacterium tuberculosis complex (MTBc) lineages between direct genotyping (on sputum) and indirect genotyping (on culture), to characterize potential culture bias against difficult growers.

Methodology/principal findings: Smear-positive sputa from consecutive new tuberculosis patients diagnosed in Cotonou, (Benin) were included, before patients had started treatment. An aliquot of decontaminated sputum was used for direct spoligotyping, and another aliquot was cultured on Löwenstein Jensen (LJ) medium (90 days), for indirect spoligotyping. After DNA extraction, spoligotyping was done according to the standard method for all specimens, and patterns obtained from sputa were compared versus those from the derived culture isolates. From 199 patient's sputa, 146 (73.4%) yielded a positive culture. In total, direct spoligotyping yielded a pattern in 98.5% (196/199) of the specimens, versus 73.4% (146/199) for indirect spoligotyping on cultures. There was good agreement between sputum- and isolate derived patterns: 94.4% (135/143) at spoligotype level and 96.5% (138/143) at (sub)lineage level. Two of the 8 pairs with discrepant pattern were suggestive of mixed infection in sputum. Ancestral lineages (Lineage 1, and M. africanum Lineages 5 and 6) were less likely to grow in culture (OR = 0.30, 95%CI (0.14 to 0.64), p = 0.0016); especially Lineage 5 (OR = 0.37 95%CI (0.17 to 0.79), p = 0.010). Among modern lineages, Lineage 4 was over-represented in positive-culture specimens (OR = 3.01, 95%CI (1.4 to 6.51), p = 0.005).

Conclusions/ significance: Ancestral lineages, especially M. africanum West African 1 (Lineage 5), are less likely to grow in culture relative to modern lineages, especially M. tuberculosis Euro-American (Lineage 4). Direct spoligotyping on smear positive sputum is effective and efficient compared to indirect spoligotyping of cultures. It allows for a more accurate unbiased determination of the population structure of the M. tuberculosis complex.

Trial registration: ClinicalTrials.gov NCT02744469.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Patients, specimens flow diagram and…
Fig 1. Patients, specimens flow diagram and laboratory analyses.
Fig 2. Discrepancies: Spoligotype profile, lineage and…
Fig 2. Discrepancies: Spoligotype profile, lineage and sub-lineage.

References

    1. Raviglione MC, Snider DE Jr, Kochi A. Global epidemiology of tuberculosis: Morbidity and mortality of a worldwide epidemic. JAMA [Internet]. 1995. January 18;273(3):220–6. Available from: doi:
    1. Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis. 2007;7(May):328–37.
    1. Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, et al. Mycobacterial lineages causing pulmonary and extrapulmonary Tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19(3):460–3. doi:
    1. Coscolla M, Gagneux S. Consequences of genomic diversity in mycobacterium tuberculosis. Semin Immunol [Internet]. 2014;26(6):431–44. Available from: doi:
    1. Brosch R, Gordon S V, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci [Internet]. 2002;99(6):3684–9. Available from: doi:
    1. de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum-review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis. 2010;4(9).
    1. Niobe-eyangoh SN, Kuaban C, Cunin P, Thonnon J, Sola C, Rastogi N, et al. Genetic Biodiversity of Mycobacterium tuberculosis Complex Strains from Patients with Pulmonary Tuberculosis in Cameroon Genetic Biodiversity of Mycobacterium tuberculosis Complex Strains from Patients with Pulmonary Tuberculosis in Cameroon. J Cinical Microbiol. 2003;41(6):2547–53.
    1. Koro FK, Simo YK, Piam FF, Noeske J, Gutierrez C, Kuaban C, et al. Population dynamics of tuberculous bacilli in cameroon as assessed by spoligotyping. J Clin Microbiol. 2013;51(1):299–302. doi:
    1. Gehre F, Antonio M, Faïhun F, Odoun M, Uwizeye C, de Rijk P, et al. The First Phylogeographic Population Structure and Analysis of Transmission Dynamics of M. africanum West African 1- Combining Molecular Data from Benin, Nigeria and Sierra Leone. PLoS One. 2013;8(10):8–13.
    1. Groenheit R, Ghebremichael S, Svensson J, Rabna P, Colombatti R, Riccardi F, et al. The Guinea-Bissau family of Mycobacterium tuberculosis complex revisited. PLoS One [Internet]. 2011. April 20 [cited 2017 Jan 13];6(4):e18601 Available from: doi:
    1. Kato-Maeda M, Metcalfe JZ, Flores L. Genotyping of Mycobacterium tuberculosis: application in epidemiologic studies. Future Microbiol [Internet]. 2011;6(2):203–16. Available from: doi:
    1. Gehre F, Otu J, DeRiemer K, de Sessions PF, Hibberd ML, Mulders W, et al. Deciphering the Growth Behaviour of Mycobacterium africanum. PLoS Negl Trop Dis. 2013;7(5).
    1. Castets M. [Mycobacterium africanum (author’s transl)]. Med Trop (Mars). 1979;39(2):145–8.
    1. Ofori-Anyinam B, Dolganov G, Van T, Davis JL, Walter ND, Garcia BJ, et al. Significant under expression of the DosR regulon in M.??tuberculosis complex lineage 6 in sputum. Tuberculosis. 2017;104:58–64. doi:
    1. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, et al. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: Implications for in vivo growth. Mol Microbiol. 2005;56(1):163–74. doi:
    1. Stonebrink B. Tubercle bacilli and Pyruvic acid. Proc Tuberc Res Counc R NetherlandsTuberculosis Assoc 1957; 4467–74. (2).
    1. Heyderman RS, Goyal M, Roberts P, Ushewokunze S, Zizhou S, Marshall BG, et al. Pulmonary tuberculosis in Harare, Zimbabwe: analysis by spoligotyping. Thorax. 1998;53(October 2016):346–50.
    1. Goyal M, Lawn S, Afful B, Acheampong JW, Griffin G, Shaw R. Spoligotyping in molecular epidemiology of tuberculosis in Ghana. J Infect [Internet]. 1999. May 1 [cited 2017 Jan 13];38(3):171–5. Available from:
    1. Suresh N, Arora J, Pant H, Rana T, Singh UB. Spoligotyping of Mycobacterium tuberculosis DNA from Archival Ziehl-Neelsen-stained sputum smears. J Microbiol Methods [Internet]. 2007. February [cited 2017 Jan 13];68(2):291–5. Available from: doi:
    1. Parwati I, Van Crevel R, Van Soolingen D, Van Der Zanden A. Application of Spoligotyping to Noncultured Mycobacterium tuberculosis Bacteria Requires an Optimized Approach [3]. J Clin Microbiol. 2003;41(11):5350–1. doi:
    1. Cafrune P, Possuelo L. Prospective study applying spoligotyping directly to DNA from sputum samples of patients suspected of having tuberculosis. Can J … [Internet]. 2009;900(October):895–900. Available from:
    1. Rieder H, Deun A, Kam K, Kim S, Chonde T, Trébucq A, et al. Priorities for Tuberculosis Bacteriology Services in Low-Income Countries [Internet]. Tuberculosis. 2007. Available from:
    1. Drugeon HB. Inactivation of Mycobacterium tuberculosis for DNA Typing Analysis Inactivation of Mycobacterium tuberculosis for DNA Typing Analysis. 1999;37(7):2350–2.
    1. Manual T. Maxwell 16 DNA Purification Kits. Components.: 0–17.
    1. Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907–14.
    1. Shabbeer A, Cowan LS, Ozcaglar C, Rastogi N, Vandenberg SL, Yener B, et al. TB-Lineage: An online tool for classification and analysis of strains of Mycobacterium tuberculosis complex. Infect Genet Evol [Internet]. 2012;12(4):789–97. Available from: doi:
    1. Vitol I, Driscoll J, Kreiswirth B, Kurepina N, Bennett KP. Identifying Mycobacterium tuberculosis complex strain families using spoligotypes. Infect Genet Evol. 2006;6:491–504. doi:
    1. Soolingen D Van, Schouls LM. Use of DNA Extracts from Ziehl-Neelsen-Stained Slides for Molecular Detection of Rifampin Resistance and Spoligotyping of Mycobacterium tuberculosis Use of DNA Extracts from Ziehl-Neelsen-Stained Slides for Molecular Detection of Rifampin Resistance and S. 2003;41(3):1101–8.
    1. Sarkar R, Lenders L, Wilkinson K a., Wilkinson RJ, Nicol MP. Modern lineages of Mycobacterium tuberculosis exhibit lineage-specific patterns of growth and cytokine induction in human monocyte-derived macrophages. PLoS One. 2012;7(8):6–13.
    1. Tientcheu LD, Maertzdorf J, Weiner J, Adetifa IM, Mollenkopf H-J, Sutherland JS, et al. Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes Immun [Internet]. 2015. July;16(5):347–55. Available from: doi:
    1. de Jong BC, Adetifa I, Walther B, Hill PC, Antonio M, Ota M and AR. NIH Public Access. FEMS Immunol Med Microbiol [Internet]. 2010;58(1):102–5. Available from: doi:
    1. Kibiki GS, Mulder B, Van Der Ven AJAM, Sam N, Boeree MJ, Van Der Zanden A, et al. Laboratory diagnosis of pulmonary tuberculosis in TB and HIV endemic settings and the contribution of real time PCR for M. tuberculosis in bronchoalveolar lavage fluid. Trop Med Int Heal. 2007;12(10):1210–7.
    1. Chartier L, Leng C, Sire JM, Le Minor O, Saman M, Bercion R, et al. Factors Associated with Negative Direct Sputum Examination in Asian and African HIV-Infected Patients with Tuberculosis (ANRS 1260). PLoS One. 2011;6(6):2–7.
    1. Organization WH. Recommendations for HIV-prevalent and resource-constrained settings World Heal Organ [Internet]. 2006; Available from:
    1. Affolabi D, Anyo G, Faihun F, Sanoussi N, Shamputa IC RL et al. Première étude d’ épidémiologie moléculaire de la tuberculose au Bénin. Int J Tuberc Dis. 2009;13(3):317–22.
    1. Doughty EL, Sergeant MJ, Adetifa I, Antonio M, Pallen MJ. Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer. PeerJ [Internet]. 2014;2:e585 Available from: doi:

Source: PubMed

3
Subscribe