Role of the central autonomic nervous system intrinsic functional organisation and psychosocial factors in primary microvascular angina and Takotsubo syndrome

Magdalena Maria Cattaneo, Emanuele Pravatà, Micol Provenzi, Marco Moccetti, Alain Kaelin, Isabella Sudano, Luigi Biasucci, Camilla Gallino, Costanzo Limoni, Carlo Calanchini, Augusto Gallino, Filippo Crea, Mattia Cattaneo, Magdalena Maria Cattaneo, Emanuele Pravatà, Micol Provenzi, Marco Moccetti, Alain Kaelin, Isabella Sudano, Luigi Biasucci, Camilla Gallino, Costanzo Limoni, Carlo Calanchini, Augusto Gallino, Filippo Crea, Mattia Cattaneo

Abstract

Introduction and objective: Dysfunctional central autonomic nervous system network (CAN) at rest may result in aberrant autonomic responses to psychosocial stressors. We hypothesised that patients with primary microvascular angina (MVA) or Takotsubo syndrome (TTS) would exhibit a peculiar functional organisation of the CAN, potentially associated with psychological patterns.

Methods: Patients underwent a psychosocial evaluation: a clinical diagnostic interview, Millon Clinical Multiaxial Inventory III, State-Trait Anxiety Inventory form Y and Short Form 36 Health Survey (SF-36). The strength of intrinsic functional connectivity (FC) between various nodes of the CAN was investigated using cerebral resting state functional MRI (RS-fMRI).

Results: We evaluated 50 (46 women) stable patients: 16 patients with MVA, 17 patients with TTS and 17 patients with previous acute myocardial infarction (AMI). Compared with AMI, patients with MVA showed a lower (higher impairment) SF-36 Body-Pain score (p 0.046) and a higher SF-36 Mental-Health score (p 0.039). Patients with TTS showed the strongest FC between two nodes of the CAN (sympathetic midcingulate cortex and parasympathetic primary motor area) (F 6.25, p 0.005) using RS-fMRI.

Conclusions: The study implements an innovative collaborative research among cardiologists, neuroscientists and psychiatrists ('Neuro-psycho-heart Team'). MVA showed a discrepancy between the highest level of self-reported body pain and the best mental health score, which might suggest a mechanism of somatisation. TTS exhibited an increased functional integration between two areas of the CAN involved in interoceptive pain awareness and negative emotional status. We implemented an innovative research collaboration among cardiologists, neuroscientists and psychiatrists. These data are hypothesis generating and suggest potential prospective investigations on pathophysiology and implementation of psychotherapy and stress-reducing techniques as therapeutic strategies.

Trial registration number: NCT02759341.

Keywords: autonomic regulation; cardiomyopathy apical; endothelial function; microvascular; syndrome X.

Conflict of interest statement

Competing interests: AG reports grants from the Swiss Heart Foundation and the ABREOC for unrelated work; IS reports grants from Swiss Heart Foundation and Swiss National Foundation for unrelated work.

© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
Study schedule and drop-outs. The figure shows the 3-visit study schedule along with the distribution of dropouts. AMI, acute myocardial infarction; fMRI, functional magnetic resonance imaging; MVA, microvascular angina; TTS, Takotsubo syndrome.
Figure 2
Figure 2
Main analysis of resting state functional connectivity (FC) using functional MRI (fMRI). The resting state FC measured by fMRI did not differ among the groups. The box-plots show Pearson’s correlation coefficients as follows: (A) whole central autonomic nervous system network (CAN) mean FC. (B) Sympathetic network (sCAN) mean FC. (C) Parasympathetic network (pCAN) mean FC. (D) sCAN-pCAN between-networks mean FC. AMI, acute myocardial infarction; MVA, microvascular angina; TTS, Takotsubo syndrome.
Figure 3
Figure 3
Exploratory analysis of resting state (RS) functional connectivity (FC) using functional MRI (fMRI). Plots and matrices represent colour-coded region of interest (ROI)-to-ROI pair FC of sympathetic-parasympathetic synchronisation. (A) The colour indicates the z-score between each pair of ROIs. As shown (*), the Takotsubo syndrome (TTS) group showed a stronger connectivity compared with acute myocardial infartion (AMI) group between the sCAN midcingulate cortex (sCAN-MCC) and the pCAN primary motor area (pCAN-PM) (p=0.022) and a borderline stronger connectivity compared with microvascular angina (MVA) group (p=0.050). A full list of the fMRI regions of interest based on Beissner et al is in the online supplementary material. (B) The figure shows the location of the two above-mentioned areas in the central nervous system (sCAN-MCC, pCAN-PM). a-Insula, anterior insula; CAN, central autonomic nervous; FDR, false discovery rate; L, left; MCC, midcingulate cortex; MVA, microvascular angina; MTG, medial temporal gyrus; pCAN, parasympathetic CAN; p-Insula, posterior insula; PM, primary motor area; R, right; sCAN, sympathetic CAN; SMG, supramarginal gyrus; sSSC, secondary somatosensory cortex; VMPFC, ventromedial prefrontal cortex.

References

    1. Lanza GA. Cardiac syndrome X: a critical overview and future perspectives. Heart 2007;93:159–66. 10.1136/hrt.2005.067330
    1. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J 2008;155:408–17. 10.1016/j.ahj.2007.11.008
    1. Altintas E, Yigit F, Taskintuna N. The impact of psychiatric disorders with cardiac syndrome X on quality of life: 3 months prospective study. Int J Clin Exp Med 2014;7:3520–7.
    1. Lutfi MF. Anxiety level and cardiac autonomic modulations in coronary artery disease and cardiac syndrome X patients. PLoS One 2017;12:e0170086. 10.1371/journal.pone.0170086
    1. Lamendola P, Lanza GA, Spinelli A, et al. . Long-term prognosis of patients with cardiac syndrome X. Int J Cardiol 2010;140:197–9. 10.1016/j.ijcard.2008.11.026
    1. Delmas C, Lairez O, Mulin E, et al. . Anxiodepressive disorders and chronic psychological stress are associated with Tako-Tsubo cardiomyopathy- new physiopathological hypothesis. Circ J 2013;77:175–80. 10.1253/circj.CJ-12-0759
    1. Summers MR, Lennon RJ, Prasad A. Pre-morbid psychiatric and cardiovascular diseases in apical ballooning syndrome (tako-tsubo/stress-induced cardiomyopathy): potential pre-disposing factors? J Am Coll Cardiol 2010;55:700–1. 10.1016/j.jacc.2009.10.031
    1. Pelliccia F, Parodi G, Greco C, et al. . Comorbidities frequency in takotsubo syndrome: an international collaborative systematic review including 1109 patients. Am J Med 2015;128:654.e11–9. 10.1016/j.amjmed.2015.01.016
    1. Templin C, Ghadri JR, Diekmann J, et al. . Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med 2015;373:929–38. 10.1056/NEJMoa1406761
    1. Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 2000;61:201–16. 10.1016/S0165-0327(00)00338-4
    1. Beissner F, Meissner K, Bär K-J, et al. . The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci 2013;33:10503–11. 10.1523/JNEUROSCI.1103-13.2013
    1. Spieker LE, Hürlimann D, Ruschitzka F, et al. . Mental stress induces prolonged endothelial dysfunction via endothelin-A receptors. Circulation 2002;105:2817–20. 10.1161/01.CIR.0000021598.15895.34
    1. Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation 2010;121:2317–25. 10.1161/CIRCULATIONAHA.109.900191
    1. Kurisu S, Kihara Y. Tako-tsubo cardiomyopathy: clinical presentation and underlying mechanism. J Cardiol 2012;60:429–37. 10.1016/j.jjcc.2012.06.015
    1. Pravatà E, Sestieri C, Mantini D, et al. . Functional connectivity MR imaging of the language network in patients with drug-resistant epilepsy. AJNR Am J Neuroradiol 2011;32:532–40. 10.3174/ajnr.A2311
    1. Pravatà E, Zecca C, Sestieri C, et al. . Hyperconnectivity of the dorsolateral prefrontal cortex following mental effort in multiple sclerosis patients with cognitive fatigue. Mult Scler 2016;22:1665–75. 10.1177/1352458515625806
    1. Thygesen K, Alpert JS, Jaffe AS, et al. . Third universal definition of myocardial infarction. Eur Heart J 2012;33:2551–67. 10.1093/eurheartj/ehs184
    1. Ong P, Camici PG, Beltrame JF, et al. . International standardization of diagnostic criteria for microvascular angina. Int J Cardiol 2018;250:16–20. 10.1016/j.ijcard.2017.08.068
    1. Ghadri J-R, Wittstein IS, Prasad A, et al. . International expert consensus document on takotsubo syndrome (Part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J 2018;39:2032–46. 10.1093/eurheartj/ehy076
    1. Mazzi F, Stieglitz RD, Trabert W, et al. . AMDP-8. Manuale per la metodologia e la documentazione della diagnosi in psichiatria / manual for the assessment and documentation of psychopathology /Arbeitsgemeinschaft für Methodik und Dokumentation in der Psychiatrie. Florence, Italy: Giunti Editore, 2011.
    1. Boyle GJ, Le Déan L. Discriminant validity of the illness behavior questionnaire and Millon clinical Multiaxial Inventory-III in a heterogeneous sample of psychiatric outpatients. J Clin Psychol 2000;56:779–91. 10.1002/(SICI)1097-4679(200006)56:6<779::AID-JCLP7>;2-7
    1. Spielberger CD, Sydeman SJ. State-Trait anxiety inventory and State-Trait anger expression Inventory. The use of psychological testing for treatment planning and outcome assessment. Hillsdale, NJ: Lawrence Erlbaum Associates, 1994.
    1. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. conceptual framework and item selection. Med Care 1992;30:473–83.
    1. Grös DF, Antony MM, Simms LJ, et al. . Psychometric properties of the State-Trait inventory for cognitive and somatic anxiety (STICSA): comparison to the State-Trait anxiety inventory (STAI). Psychol Assess 2007;19:369–81. 10.1037/1040-3590.19.4.369
    1. Apolone G, Mosconi P. The Italian SF-36 health survey: translation, validation and norming. J Clin Epidemiol 1998;51:1025–36. 10.1016/s0895-4356(98)00094-8
    1. Ogawa S, Lee TM, Nayak AS, et al. . Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14:68–78. 10.1002/mrm.1910140108
    1. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2012;2:125–41. 10.1089/brain.2012.0073
    1. Carter AR, Astafiev SV, Lang CE, et al. . Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 2010;67:365–75. 10.1002/ana.21905
    1. Lanza GA, Pasceri V, Colonna G, et al. . Cardiac autonomic function and sensitivity to pain in postmenopausal women with angina and normal coronary arteries. Am J Cardiol 1997;79:1174–9. 10.1016/S0002-9149(97)00077-5
    1. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002;15:870–8. 10.1006/nimg.2001.1037
    1. Atienza F, Velasco JA, Brown S, et al. . Assessment of quality of life in patients with chest pain and normal coronary arteriogram (syndrome X) using a specific questionnaire. Clin Cardiol 1999;22:283–91. 10.1002/clc.4960220406
    1. Daniel M, Agewall S, Caidahl K, et al. . Effect of myocardial infarction with nonobstructive coronary arteries on physical capacity and quality-of-life. Am J Cardiol 2017;120:341–6. 10.1016/j.amjcard.2017.05.001
    1. Dickinson WP, Dickinson LM, deGruy FV, et al. . The somatization in primary care study: a tale of three diagnoses. Gen Hosp Psychiatry 2003;25:1–7. 10.1016/S0163-8343(02)00247-5
    1. Vermeltfoort IAC, Raijmakers PGHM, Odekerken DAM, et al. . Association between anxiety disorder and the extent of ischemia observed in cardiac syndrome X. J Nucl Cardiol 2009;16:405–10. 10.1007/s12350-008-9032-2
    1. Hueston WJ, Werth J, Mainous AG. Personality disorder traits: prevalence and effects on health status in primary care patients. Int J Psychiatry Med 1999;29:63–74. 10.2190/YCKA-HRQ4-U7QV-5H1J
    1. Rosen SD, Paulesu E, Wise RJS, et al. . Central neural contribution to the perception of chest pain in cardiac syndrome X. Heart 2002;87:513–9. 10.1136/heart.87.6.513
    1. Pereira VH, Marques P, Magalhães R, et al. . Central autonomic nervous system response to autonomic challenges is altered in patients with a previous episode of takotsubo cardiomyopathy. Eur Heart J Acute Cardiovasc Care 2016;5:152–63. 10.1177/2048872615568968
    1. Klein C, Hiestand T, Ghadri J-R, et al. . Takotsubo Syndrome - Predictable from brain imaging data. Sci Rep 2017;7:5434. 10.1038/s41598-017-05592-7
    1. Vogt BA. Midcingulate cortex:structure, connections, homologies, functions and diseases. J Chem Neuroanat 2016;74:28–46. 10.1016/j.jchemneu.2016.01.010
    1. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron 2007;55:377–91. 10.1016/j.neuron.2007.07.012
    1. Medford N, Critchley HD. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct Funct 2010;214:535–49. 10.1007/s00429-010-0265-x
    1. Rosman L, Dunsiger S, Salmoirago-Blotcher E. Cumulative impact of stressful life events on the development of takotsubo cardiomyopathy. Ann Behav Med 2017;51:925–30. 10.1007/s12160-017-9908-y
    1. Wallström S, Ulin K, Määttä S, et al. . Impact of long-term stress in takotsubo syndrome: experience of patients. Eur J Cardiovasc Nurs 2016;15:522–8. 10.1177/1474515115618568
    1. Sabisz A, Treder N, Fijałkowska M, et al. . Brain resting state functional magnetic resonance imaging in patients with takotsubo cardiomyopathy an Inseparable pair of brain and heart. Int J Cardiol 2016;224:376–81. 10.1016/j.ijcard.2016.09.067
    1. Hiestand T, Hänggi J, Klein C, et al. . Takotsubo syndrome associated with structural brain alterations of the limbic system. J Am Coll Cardiol 2018;71:809–11. 10.1016/j.jacc.2017.12.022
    1. Templin C, Hänggi J, Klein C, et al. . Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur Heart J 2019;40:1183–7. 10.1093/eurheartj/ehz068
    1. Huffman JC, Smith FA, Blais MA, et al. . Recognition and treatment of depression and anxiety in patients with acute myocardial infarction. Am J Cardiol 2006;98:319–24. 10.1016/j.amjcard.2006.02.033

Source: PubMed

3
Subscribe