Assessing Dry Weight of Hemodialysis Patients via Sparse Laplacian Regularized RVFL Neural Network with L2,1-Norm

Xiaoyi Guo, Wei Zhou, Qun Lu, Aiyan Du, Yinghua Cai, Yijie Ding, Xiaoyi Guo, Wei Zhou, Qun Lu, Aiyan Du, Yinghua Cai, Yijie Ding

Abstract

Dry weight is the normal weight of hemodialysis patients after hemodialysis. If the amount of water in diabetes is too much (during hemodialysis), the patient will experience hypotension and shock symptoms. Therefore, the correct assessment of the patient's dry weight is clinically important. These methods all rely on professional instruments and technicians, which are time-consuming and labor-intensive. To avoid this limitation, we hope to use machine learning methods on patients. This study collected demographic and anthropometric data of 476 hemodialysis patients, including age, gender, blood pressure (BP), body mass index (BMI), years of dialysis (YD), and heart rate (HR). We propose a Sparse Laplacian regularized Random Vector Functional Link (SLapRVFL) neural network model on the basis of predecessors. When we evaluate the prediction performance of the model, we fully compare SLapRVFL with the Body Composition Monitor (BCM) instrument and other models. The Root Mean Square Error (RMSE) of SLapRVFL is 1.3136, which is better than other methods. The SLapRVFL neural network model could be a viable alternative of dry weight assessment.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Copyright © 2021 Xiaoyi Guo et al.

Figures

Figure 1
Figure 1
Schematic of our proposed method.
Figure 2
Figure 2
The RMSE under different numbers of hidden layer nodes (SLapRVFL network).
Figure 3
Figure 3
The RMSE of iterations on the training set.
Figure 4
Figure 4
The RMSE under different λ1 and λ2.
Figure 5
Figure 5
Folded empirical cumulative distribution plot between different methods.
Figure 6
Figure 6
Bland–Altman plot analysis.
Algorithm 1
Algorithm 1
Algorithm 1. Algorithm of SLapRVFL

References

    1. Grassmann A., Uhlenbusch-Körwer I., Bonnie-Schorn E., Vienken J. Composition and management of hemodialysis fluids. Good Dialysis Practice. 2000;2:13–25.
    1. Wabel P., Chamney P., Moissl U., Jirka T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purification. 2009;27(1):75–80. doi: 10.1159/000167013.
    1. Alexiadis G., Panagoutsos S., Roumeliotis S., et al. Comparison of multiple fluid status assessment methods in patients on chronic hemodialysis. International Urology and Nephrology. 2016;49(3):1–8.
    1. Ohashi Y., Sakai K., Hase H., Joki N. Dry weight targeting: the art and science of conventional hemodialysis. Seminars in Dialysis. 2018;31
    1. Asmat H., Iqbal R., Sharif F., Mahmood A., Abbas A., Kashif W. Validation of bioelectrical impedance analysis for assessing dry weight of dialysis patients in Pakistan. Saudi Journal of Kidney Diseases & Transplantation. 2017;28(2):p. 285.
    1. Jiang C., Patel S., Moses A., DeVita M. V., Michelis M. F. Use of lung ultrasonography to determine the accuracy of clinically estimated dry weight in chronic hemodialysis patients. International Urology and Nephrology. 2017;49(12):2223–2230. doi: 10.1007/s11255-017-1709-5.
    1. Susantitaphong P., Laowaloet S., Tiranathanagul K., et al. Reliability of blood pressure parameters for dry weight estimation in hemodialysis patients. Therapeutic Apheresis and Dialysis. 2013;17(1):9–15. doi: 10.1111/j.1744-9987.2012.01136.x.
    1. Liu G., Hu Y., Han Z., Jin S., Jiang Q. Genetic variant rs17185536 regulates SIM1 gene expression in human brain hypothalamus. Proceedings of the National Academy of Sciences. 2019;116(9):3347–3348. doi: 10.1073/pnas.1821550116.
    1. Liu G., Jin S., Hu Y., Jiang Q. Disease status affects the association between rs4813620 and the expression of Alzheimer’s disease susceptibility gene TRIB3. Proceedings of the National Academy of Sciences. 2018;115(45):E10519–E10520. doi: 10.1073/pnas.1812975115.
    1. Bi X. A., Liu Y., Xie Y., Hu X., Jiang Q. Morbigenous brain region and gene detection with a genetically evolved random neural network cluster approach in late mild cognitive impairment. Bioinformatics. 2020;36(8):2561–2568. doi: 10.1093/bioinformatics/btz967.
    1. Chiu J. S., Chong C. F., Lin Y. F., Wu C. C., Wang Y. F., Li Y. C. Applying an artificial neural network to predict total body water in hemodialysis patients. American Journal of Nephrology. 2005;25(5):507–513. doi: 10.1159/000088279.
    1. Esteva A., Kuprel B., Novoa R. A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118.
    1. Qu K., Guo F., Liu X., Lin Y., Zou Q. Application of machine learning in microbiology. Frontiers in Microbiology. 2019;10:p. 827. doi: 10.3389/fmicb.2019.00827.
    1. Zhao Q., Yang Y., Ren G., Ge E., Fan C. Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations. IEEE Transactions on Nanobioscience. 2019;18(4):578–584. doi: 10.1109/TNB.2019.2922214.
    1. Jiang L., Xiao Y., Ding Y., Tang J., Guo F. FKL-Spa-LapRLS: an accurate method for identifying human microRNA-disease association. BMC Genomics. 2018;19(S10):p. 911. doi: 10.1186/s12864-018-5273-x.
    1. Zeng X., Liu L., Lü L., Zou Q. Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics. 2018;34(14):2425–2432. doi: 10.1093/bioinformatics/bty112.
    1. Ding Y., Jiang L., Tang J., Guo F. Identification of human microRNA-disease association via hypergraph embedded bipartite local model. Computational Biology and Chemistry. 2020;89:p. 107369. doi: 10.1016/j.compbiolchem.2020.107369.
    1. Jia C., Zuo Y., Zou Q. O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique. Bioinformatics. 2018;34(12):2029–2036. doi: 10.1093/bioinformatics/bty039.
    1. Wei L., Luan S., Nagai L. A., Su R., Zou Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics. 2018;35(8):1326–1333.
    1. Zou Q., Xing P., Wei L., Liu B. Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA. 2019;25(2):205–218. doi: 10.1261/rna.069112.118.
    1. Dai C., Feng P., Cui L., Su R., Chen W., Wei L. Iterative feature representation algorithm to improve the predictive performance of N7-methylguanosine sites. Briefings in Bioinformatics. 2020 doi: 10.1093/bib/bbaa278.
    1. Liu B., Jiang S., Zou Q. HITS-PR-HHblits: protein remote homology detection by combining PageRank and hyperlink-induced topic search. Briefings in Bioinformatics. 2018;21(1):298–308. doi: 10.1093/bib/bby104.
    1. Wei L., Ding Y., Su R., Tang J., Zou Q. Prediction of human protein subcellular localization using deep learning. Journal of Parallel and Distributed Computing. 2018;117:212–217. doi: 10.1016/j.jpdc.2017.08.009.
    1. Ding Y., Tang J., Guo F. Protein crystallization identification via fuzzy model on linear neighborhood representation. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2019:p. 1. doi: 10.1109/TCBB.2019.2954826.
    1. Wang Y., Ding Y., Tang J., Dai Y., Guo F. CrystalM: a multi-view fusion approach for protein crystallization prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2019:p. 1. doi: 10.1109/TCBB.2019.2912173.
    1. Wang H., Ding Y., Tang J., Guo F. Identification of membrane protein types via multivariate information fusion with Hilbert–Schmidt Independence criterion. Neurocomputing. 2019;383:257–269.
    1. Shen Y., Ding Y., Tang J., Zou Q., Guo F. Critical evaluation of web-based prediction tools for human protein subcellular localization. Briefings in Bioinformatics. 2019;21(5):1628–1640.
    1. Ding Y., Tang J., Guo F. Human protein subcellular localization identification via fuzzy model on kernelized neighborhood representation. Applied Soft Computing. 2020;96:p. 106596. doi: 10.1016/j.asoc.2020.106596.
    1. Su R., He L., Liu T., Liu X., Wei L. Protein subcellular localization based on deep image features and criterion learning strategy. Briefings in Bioinformatics. 2020 doi: 10.1093/bib/bbaa313.
    1. Ru X., Li L., Zou Q. Incorporating distance-based top-n-gram and random forest to identify electron transport proteins. Journal of Proteome Research. 2019;18(7):2931–2939. doi: 10.1021/acs.jproteome.9b00250.
    1. Liu J., Su R., Zhang J., Wei L. Classification and gene selection of triple-negative breast cancer subtype embedding gene connectivity matrix in deep neural network. Briefings in Bioinformatics. 2021 doi: 10.1093/bib/bbaa395.
    1. Wei L., He W., Malik A., Su R., Cui L., Manavalan B. Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework. Briefings in Bioinformatics. 2020 doi: 10.1093/bib/bbaa275.
    1. Su R., Liu T., Sun C., Jin Q., Jennane R., Wei L. Fusing convolutional neural network features with hand-crafted features for osteoporosis diagnoses. Neurocomputing. 2020;385:300–309. doi: 10.1016/j.neucom.2019.12.083.
    1. Ding Y., Tang J., Guo F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing. 2019;325:211–224. doi: 10.1016/j.neucom.2018.10.028.
    1. Ding Y., Tang J., Guo F. Identification of drug-side effect association via semisupervised model and multiple kernel learning. IEEE Journal of Biomedical and Health Informatics. 2019;23(6):2619–2632. doi: 10.1109/JBHI.2018.2883834.
    1. Ding Y., Tang J., Guo F. Identification of drug-target interactions via dual Laplacian regularized least squares with multiple kernel fusion. Knowledge-Based Systems. 2020;204:p. 106254. doi: 10.1016/j.knosys.2020.106254.
    1. Ding Y. J., Jijun T., Guo F. Identification of drug-target interactions via fuzzy bipartite local model. Neural Computing and Applications. 2020;32(14):10303–10319. doi: 10.1007/s00521-019-04569-z.
    1. Guo X., Zhou W., Yu Y., Ding Y., Tang J., Guo F. A novel triple matrix factorization method for detecting drug-side effect association based on kernel target alignment. BioMed Research International. 2020;2020:11. doi: 10.1155/2020/4675395.
    1. Guo X., Zhou W., Shi B., et al. An efficient multiple kernel support vector regression model for assessing dry weight of hemodialysis patients. Current Bioinformatics. 2020;15 doi: 10.2174/1574893615999200614172536.
    1. Pao Y.-H., Park G.-H., Sobajic D. J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing. 1994;6(2):163–180. doi: 10.1016/0925-2312(94)90053-1.
    1. Passauer J., Petrov H., Schleser A., Leicht J., Pucalka K. Evaluation of clinical dry weight assessment in haemodialysis patients using bioimpedance spectroscopy: a cross-sectional study. Nephrology Dialysis Transplantation. 2009;25(2):545–551.
    1. Kraemer M., Rode C., Wizemann V. Detection limit of methods to assess fluid status changes in dialysis patients. Kidney International. 2006;69(9):1609–1620. doi: 10.1038/sj.ki.5000286.
    1. Jian Y., Li X., Cheng X., et al. Comparison of bioimpedance and clinical methods for dry weight prediction in maintenance hemodialysis patients. Blood Purification. 2014;37(3):214–220. doi: 10.1159/000362109.
    1. Krouwer J. S., Monti K. L. A simple, graphical method to evaluate laboratory assays. European Journal of Clinical Chemistry and Clinical Biochemistry. 1995;33(6):525–527.
    1. Cha K., Chertow G. M., Gonzalez J., Lazarus J. M., Wilmore D. W. Multifrequency bioelectrical impedance estimates the distribution of body water. Journal of Applied Physiology. 1995;79(4):1316–1319. doi: 10.1152/jappl.1995.79.4.1316.
    1. Ho L. T., Kushner R. F., Schoeller D. A., Gudivaka R., Spiegel D. M. Bioimpedance analysis of total body water in hemodialysis patients. Kidney international. 1994;46(5):1438–1442.
    1. Wang Y., Shi F., Cao L., et al. Morphological segmentation analysis and texture-based support vector machines classification on mice liver fibrosis microscopic images. Current Bioinformatics. 2019;14(4):282–294. doi: 10.2174/1574893614666190304125221.
    1. Fajila M. N. F. Gene subset selection for leukemia classification using microarray data. Current Bioinformatics. 2019;14(4):353–358. doi: 10.2174/1574893613666181031141717.
    1. Wei L., Liao M., Gao Y., Ji R., He Z., Zou Q. Improved and promising identification of human microRNAs by incorporating a high-quality negative set. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2014;11(1):192–201. doi: 10.1109/TCBB.2013.146.
    1. Wei L., Su R., Wang B., Li X., Zou Q., Gao X. Integration of deep feature representations and handcrafted features to improve the prediction of N6-methyladenosine sites. Neurocomputing. 2019;324:3–9. doi: 10.1016/j.neucom.2018.04.082.
    1. Wei L., Wan S., Guo J., Wong K. K. L. A novel hierarchical selective ensemble classifier with bioinformatics application. Artificial Intelligence in Medicine. 2017;83:82–90. doi: 10.1016/j.artmed.2017.02.005.
    1. Wei L., Xing P., Zeng J., Chen J. X., Su R., Guo F. Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier. Artificial Intelligence in Medicine. 2017;83:67–74. doi: 10.1016/j.artmed.2017.03.001.
    1. Wei L., Zhou C., Chen H., Song J., Su R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics. 2018;34(23):4007–4016. doi: 10.1093/bioinformatics/bty451.
    1. Yang C., Ding Y., Meng Q., Tang J., Guo F. Granular multiple kernel learning for identifying RNA-binding protein residues via integrating sequence and structure information. Neural Computing and Applications. 2021:1–13. doi: 10.1007/s00521-020-05573-4.
    1. Wang H., Tang J., Ding Y., Guo F. Exploring associations of non-coding RNAs in human diseases via three-matrix factorization with hypergraph-regular terms on center kernel alignment. Briefings in Bioinformatics. 2021 doi: 10.1093/bib/bbaa409.
    1. Wang H., Ding Y., Tang J., Zou Q., Guo F. Identify RNA-associated subcellular localizations based on multi-label learning using Chou’s 5-steps rule. BMC Genomics. 2021;22(1):p. 56. doi: 10.1186/s12864-020-07347-7.
    1. Zou Y., Wu H., Guo X., et al. MK-FSVM-SVDD: a multiple kernel-based fuzzy SVM model for predicting DNA-binding proteins via support vector data description. Current Bioinformatics. 2020;15:p. 1.
    1. Wang J., Wang H., Wang X., Chang H. Predicting drug-target interactions via FM-DNN learning. Current Bioinformatics. 2020;15(1):68–76. doi: 10.2174/1574893614666190227160538.
    1. Xiao Y., Wu J., Lin Z., Zhao X. A deep learning-based multi-model ensemble method for cancer prediction. Computer Methods and Programs in Biomedicine. 2017;153:1–9.
    1. Huang Y., Yuan K., Tang M., et al. Melatonin inhibiting the survival of human gastric cancer cells under ER stress involving autophagy and Ras-Raf-MAPK signalling. Journal of Cellular and Molecular Medicine. 2020:1–13.

Source: PubMed

3
Subscribe