Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and L-glutamine

S Basuroy, P Sheth, C M Mansbach, R K Rao, S Basuroy, P Sheth, C M Mansbach, R K Rao

Abstract

Acetaldehyde, a toxic metabolite of ethanol oxidation, is suggested to play a role in the increased risk for gastrointestinal cancers in alcoholics. In the present study, the effect of acetaldehyde on tyrosine phosphorylation, immunofluorescence localization, and detergent-insoluble fractions of the tight junction and the adherens junction proteins was determined in the human colonic mucosa. The role of EGF and L-glutamine in prevention of acetaldehyde-induced effects was also evaluated. Acetaldehyde reduced the protein tyrosine phosphatase activity, thereby increasing the tyrosine phosphorylation of occludin, E-cadherin, and beta-catenin. The levels of occludin, zonula occludens-1, E-cadherin, and beta-catenin in detergent-insoluble fractions were reduced by acetaldehyde, while it increased their levels in detergent-soluble fractions. Pretreatment with EGF or L-glutamine prevented acetaldehyde-induced protein tyrosine phosphorylation, redistribution from intercellular junctions, and reduction in the levels of detergent-insoluble fractions of occludin, zonula occludens-1, E-cadherin, and beta-catenin. These results demonstrate that acetaldehyde induces tyrosine phosphorylation and disrupts tight junction and adherens junction in human colonic mucosa, which can be prevented by EGF and glutamine.

Source: PubMed

3
Subscribe