Evidences of a New Psychobiotic Formulation on Body Composition and Anxiety

Carmela Colica, Ennio Avolio, Patrizio Bollero, Renata Costa de Miranda, Simona Ferraro, Paola Sinibaldi Salimei, Antonino De Lorenzo, Laura Di Renzo, Carmela Colica, Ennio Avolio, Patrizio Bollero, Renata Costa de Miranda, Simona Ferraro, Paola Sinibaldi Salimei, Antonino De Lorenzo, Laura Di Renzo

Abstract

Background: Gut microbiota is implied in obesity, because of its ability to harvest energy from diet, and in the regulation of behavior. Given the link between gut microbiota, body composition, obesity, and anxiety, the aim of this study was to evaluate the effects of a new psychobiotic formulation.

Methods: Eligible patients were randomly divided into three groups: psychobiotics oral suspension group (POSG); dietary treatment group (DTG); combined treatment group (CTG). All subjects underwent body composition and psychological profile evaluation.

Results: Significant changes in body composition parameters in each group were relieved after all treatments. Hamilton anxiety rating scale (HAM-A) highlighted a significant reduction of the total score for all study population after treatments in POSG (p = 0.01) and CTG (p = 0.04). A reduction of HAM-A total score in anxious subjects in POSG or CTG and a significant reduction of positive subjects for HAM-A in POSG (p = 0.03) and in CDG (p = 0.01) were shown.

Discussion: Three-week intake of selected POS represents a good approach to solve problems related to obesity and behavior disorders. However, new clinical trials need to be performed on a larger population and for a longer period of treatment before definitive conclusions can be made. This trial is registered with NCT01890070.

Figures

Figure 1
Figure 1
Study flow diagram according to Consort, 2010.
Figure 2
Figure 2
Hamilton anxiety rating scale (HAM-A) score variation before and after treatments in anxious and nonanxious subjects. Nonanxious subjects (negative test) if total score p < 0.05 by Kruskal Wallis test. Anxious variation score among groups: p = 0.10 and nonanxious variation score among groups: p = 0.67. POSG: psychobiotics oral suspension group; DTG: dietary treatment group; CTG: combined treatment group.
Figure 3
Figure 3
Frequency change of anxious subjects in POSG, DTG, and CTG after treatment. Frequency of anxiety was evaluated before and after treatment in POSG, DTG, and CTG. Negative test (nonanxious 619 subjects) if total score ∗p < 0.05 between T0 and T1 by McNemar test. POSG:p = 0.03∗; DTG: p = 0.10; CTG: p = 0.01∗. POSG: psychobiotics oral suspension group; DTG: dietary treatment group; CTG: combined treatment group.
Figure 4
Figure 4
Gut-microbiota axis.

References

    1. Qin J., Li R., Raes J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821.
    1. Clarke G., Stilling R. M., Kennedy P. J., Stanton C., Cryan J. F., Dinan T. G. Minireview: gut microbiota: the neglected endocrine organ. Molecular Endocrinology. 2014;28(8):1221–1238. doi: 10.1210/me.2014-1108.
    1. Penders J., Thijs C., Vink C., et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–521. doi: 10.1542/peds.2005-2824.
    1. Yatsunenko T., Rey F. E., Manary M. J., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi: 10.1038/nature11053.
    1. Niedermaier T., Behrens G., Schmid D., Schlecht I., Fischer B., Leitzmann M. F. Body mass index, physical activity, and risk of adult meningioma and glioma: a meta-analysis. Neurology. 2015;85(15):1342–1350. doi: 10.1212/WNL.0000000000002020.
    1. Harvie M., Howell A., Vierkant R. A., et al. Association of gain and loss of weight before and after menopause with risk of postmenopausal breast cancer in the Iowa women’s health study. Cancer Epidemiology, Biomarkers & Prevention. 2005;14(3):656–661. doi: 10.1158/1055-9965.EPI-04-0001.
    1. Hall J. E., do Carmo J. M., da Silva A. A., Wang Z., Hall M. E. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circulation Research. 2015;116(6):991–1006. doi: 10.1161/CIRCRESAHA.116.305697.
    1. Grover S. A., Kaouache M., Rempel P., et al. Years of life lost and healthy life-years lost from diabetes and cardiovascular disease in overweight and obese people: a modelling study. The Lancet Diabetes and Endocrinology. 2015;3(2):114–122. doi: 10.1016/S2213-8587(14)70229-3.
    1. Blagojevic M., Jinks C., Jeffery A., Jordan K. P. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis and Cartilage. 2010;18(1):24–33. doi: 10.1016/j.joca.2009.08.010.
    1. Di Renzo L., Del Gobbo V., Bigioni M., Premrov M. G., Cianci R., De Lorenzo A. Body composition analyses in normal weight obese women. European Review for Medical and Pharmacological Sciences. 2006;10(4):191–196.
    1. Swinburn B., Egger G., Raza F. Dissecting obesogenic environments: the development and application of a framework for identifying and prioritizing environmental interventions for obesity. Preventive Medicine. 1999;29, 6, Part 1:563–570. doi: 10.1006/pmed.1999.0585.
    1. Di Renzo L., Tyndall E., Gualtieri P., et al. Association of body composition and eating behavior in the normal weight obese syndrome. Eating and Weight Disorders. 2016;21(1):99–106. doi: 10.1007/s40519-015-0215-y.
    1. Speliotes E. K., Willer C. J., Berndt S. I., et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics. 2010;42(11):937–948. doi: 10.1038/ng.686.
    1. Hindorff L. A., Sethupathy P., Junkins H. A., et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(23):9362–9367. doi: 10.1073/pnas.0903103106.
    1. Di Renzo L., Gloria-Bottini F., Saccucci P., et al. Role of interleukin-15 receptor alpha polymorphisms in normal weight obese syndrome. International Journal of Immunopathology and Pharmacology. 2009;22(1):105–113. doi: 10.1177/039463200902200112.
    1. Di Renzo L., Bertoli A., Bigioni M., et al. Body composition and -174G/C interleukin-6 promoter gene polymorphism: association with progression of insulin resistance in normal weight obese syndrome. Current Pharmaceutical Design. 2008;14(26):2699–2706. doi: 10.2174/138161208786264061.
    1. Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. doi: 10.1038/nature05414.
    1. Samuel B. S., Shaito A., Motoike T., et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(43):16767–16772. doi: 10.1073/pnas.0808567105.
    1. Boulange C. L., Neves A. L., Chilloux J., Nicholson J. K., Dumas M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine. 2016;8(1):p. 42. doi: 10.1186/s13073-016-0303-2.
    1. Piya M. K., McTernan P. G., Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. The Journal of Endocrinology. 2013;216(1):T1–15. doi: 10.1530/JOE-12-0498.
    1. Larsson E., Tremaroli V., Lee Y. S., et al. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut. 2012;61(8):1124–1131. doi: 10.1136/gutjnl-2011-301104.
    1. Cryan J. F., Dinan T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nature Reviews Neuroscience. 2012;13(10):701–712. doi: 10.1038/nrn3346.
    1. Park A. J., Collins J., Blennerhassett P. A., et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society. 2013;25(9):733–e575. doi: 10.1111/nmo.12153.
    1. Bested A. C., Logan A. C., Selhub E. M. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part II - contemporary contextual research. Gut Pathogens. 2013;5(1):p. 3. doi: 10.1186/1757-4749-5-3.
    1. Dinan T. G., Stanton C., Cryan J. F. Psychobiotics: a novel class of psychotropic. Biological Psychiatry. 2013;74(10):720–726. doi: 10.1016/j.biopsych.2013.05.001]. doi: 10.1016/j.biopsych.2013.05.001].
    1. Messaoudi M., Lalonde R., Violle N., et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. The British Journal of Nutrition. 2011;105(5):755–764. doi: 10.1017/S0007114510004319.
    1. Benton D., Williams C., Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. European Journal of Clinical Nutrition. 2007;61(3):355–361. doi: 10.1038/sj.ejcn.1602546.
    1. Diaz Heijtz R., Wang S., Anuar F., et al. Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(7):3047–3052. doi: 10.1073/pnas.1010529108.
    1. Neufeld K. A., Kang N., Bienenstock J., Foster J. A. Effects of intestinal microbiota on anxiety-like behavior. Communicative & Integrative Biology. 2011;4(4):492–494. doi: 10.4161/cib.4.4.15702.
    1. Lyte M., Li W., Opitz N., Gaykema R. P., Goehler L. E. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiology & Behavior. 2006;89(3):350–357. doi: 10.1016/j.physbeh.2006.06.019.
    1. Bruce-Keller A. J., Keller J. N., Morrison C. D. Obesity and vulnerability of the CNS. Biochimica et Biophysica Acta. 2009;1792(5):395–400. doi: 10.1016/j.bbadis.2008.10.004.
    1. Elias M. F., Elias P. K., Sullivan L. M., Wolf P. A., D'Agostino R. B. Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. International Journal of Obesity and Related Metabolic Disorders. 2003;27(2):260–268. doi: 10.1038/sj.ijo.802225.
    1. Waldstein S. R., Wendell C. R., Lefkowitz D. M., et al. Interactive relations of blood pressure and age to subclinical cerebrovascular disease. Journal of Hypertension. 2012;30(12):2352–2356. doi: 10.1097/HJH.0b013e3283595651.
    1. Needham B. L., Epel E. S., Adler N. E., Kiefe C. Trajectories of change in obesity and symptoms of depression: the CARDIA study. American Journal of Public Health. 2010;100(6):1040–1046. doi: 10.2105/AJPH.2009.172809.
    1. Ma J., Xiao L. Obesity and depression in US women: results from the 2005-2006 National Health and Nutritional Examination Survey. Obesity (Silver Spring) 2010;18:347–353. doi: 10.1038/oby.2009.213.
    1. Denoth F., Scalese M., Siciliano V., Di Renzo L., De Lorenzo A., Molinaro S. Clustering eating habits: frequent consumption of different dietary patterns among the Italian general population in the association with obesity, physical activity, sociocultural characteristics and psychological factors. Eating and Weight Disorders. 2016;21(2):257–268. doi: 10.1007/s40519-015-0225-9.
    1. El Ghoch M., Calugi S., Dalle Grave R. The effects of low-carbohydrate diets on psychosocial outcomes in obesity/overweight: a systematic review of randomized, controlled studies. Nutrients. 2016;8(7) doi: 10.3390/nu8070402.
    1. Di Renzo L., Carbonelli M. G., Bianchi A., et al. Body composition changes after laparoscopic adjustable gastric banding: what is the role of -174G>C interleukin-6 promoter gene polymorphism in the therapeutic strategy? International Journal of Obesity. 2012;36(3):369–378. doi: 10.1038/ijo.2011.132.
    1. Di Renzo L., Carbonelli M. G., Bianchi A., et al. Impact of the -174 G > C IL-6 polymorphism on bioelectrical parameters in obese subjects after laparoscopic adjustable gastric banding. Journal of Obesity. 2012;2012:7. doi: 10.1155/2012/208953.208953
    1. Kushner R. F., Schoeller D. A., Fjeld C. R., Danford L. Is the impedance index (ht2/R) significant in predicting total body water? The American Journal of Clinical Nutrition. 1992;56(5):835–839.
    1. Bauer J., Thornton J., Heymsfield S., et al. Dual-energy X-ray absorptiometry prediction of adipose tissue depots in children and adolescents. Pediatric Research. 2012;72(4):420–425. doi: 10.1038/pr.2012.100.
    1. De Lorenzo A., Noce A., Bigioni M., et al. The effects of Italian Mediterranean organic diet (IMOD) on health status. Current Pharmaceutical Design. 2010;16(7):814–824. doi: 10.2174/138161210790883561.
    1. Hamilton M. The assessment of anxiety states by rating. The British Journal of Medical Psychology. 1959;32(1):50–55. doi: 10.1111/j.2044-8341.1959.tb00467.x.
    1. Thompson E. Hamilton rating scale for anxiety (HAM-A) Occupational Medicine (London) 2015;65(7):p. 601. doi: 10.1093/occmed/kqv054.
    1. Dinan T. G., Stilling R. M., Stanton C., Cryan J. F. Collective unconscious: how gut microbes shape human behavior. Journal of Psychiatric Research. 2015;63:1–9. doi: 10.1016/j.jpsychires.2015.02.021.
    1. Cao H. Adipocytokines in obesity and metabolic disease. The Journal of Endocrinology. 2014;220(2):T47–T59. doi: 10.1530/JOE-13-0339.
    1. Jokinen E. Obesity and cardiovascular disease. Minerva Pediatrica. 2015;67(1):25–32.
    1. De Lorenzo A., Soldati L., Sarlo F., Calvani M., Di Lorenzo N., Di Renzo L. New obesity classification criteria as a tool for bariatric surgery indication. World Journal of Gastroenterology. 2016;22(2):681–703. doi: 10.3748/wjg.v22.i2.681. Review.
    1. Winer D. A., Winer S., Dranse H. J., Lam T. K. Immunologic impact of the intestine in metabolic disease. The Journal of Clinical Investigation. 2017;127(1):33–42. doi: 10.1172/JCI88879.
    1. Singh V. P., Sharma J., Babu S., Rizwanulla, Singla A. Role of probiotics in health and disease: a review. The Journal of the Pakistan Medical Association. 2013;63(2):253–257.
    1. Lin C. S., Chang C. J., Lu C. C., et al. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease. Biomed Journal. 2014;37(5):259–268. doi: 10.4103/2319-4170.138314.
    1. Osterberg K. L., Boutagy N. E., McMillan R. P., et al. Probiotic supplementation attenuates increases in body mass and fat mass during high-fat diet in healthy young adults. Obesity (Silver Spring) 2015;23(12):2364–2370. doi: 10.1002/oby.21230.
    1. Stenman L. K., Lehtinen M. J., Meland N., et al. Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults-randomized controlled trial. eBioMedicine. 2016;13:190–200. doi: 10.1016/j.ebiom.2016.10.036.
    1. De Lorenzo A., Bianchi A., Maroni P., et al. Adiposity rather than BMI determines metabolic risk. International Journal of Cardiology. 2013;166(1):111–117. doi: 10.1016/j.ijcard.2011.10.006.
    1. Di Daniele N., Petramala L., Di Renzo L., et al. Body composition changes and cardiometabolic benefits of a balanced Italian Mediterranean diet in obese patients with metabolic syndrome. Acta Diabetologica. 2013;50(3):409–416. doi: 10.1007/s00592-012-0445-7.
    1. Kim M., Kim M., Kang M., et al. Effects of weight loss using supplementation with Lactobacillus strains on body fat and medium-chain acylcarnitines in overweight individuals. Food & Function. 2017;8(1):250–261. doi: 10.1039/c6fo00993j.
    1. Clements J. N., Shealy K. M. Liraglutide: an injectable option for the management of obesity. The Annals of Pharmacotherapy. 2015;49(8):938–944. doi: 10.1177/1060028015586806.
    1. Miraghajani M., Dehsoukhteh S. S., Rafie N., Hamedani S. G., Sabihi S., Ghiasvand R. Potential mechanisms linking probiotics to diabetes: a narrative review of the literature. São Paulo Medical Journal. 2017;135(2):169–178. doi: 10.1590/1516-3180.2016.0311271216.
    1. Tabuchi M., Ozaki M., Tamura A., et al. Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Bioscience, Biotechnology, and Biochemistry. 2003;67(6):1421–1424. doi: 10.1271/bbb.67.1421.
    1. Ejtahed H. S., Mohtadi-Nia J., Homayouni-Rad A., Niafar M., Asghari-Jafarabadi M., Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28(5):539–543. doi: 10.1016/j.nut.2011.08.013.
    1. Miljkovic I., Cauley J. A., Wang P. Y., et al. Abdominal myosteatosis is independently associated to hyperinsulinemia and insulin resistance among older men without diabetes. Obesity (Silver Spring, Md) 2013;21(10):2118–2125. doi: 10.1002/oby.20346.
    1. Yang X. J., Yao X. H., Yan K., et al. Relationship between body fat distribution and insulin resistance, islet β cell function and metabolic disorders in adults. Zhonghua Yi Xue Za Zhi. 2013;93(36):2867–2870.
    1. Valentini Neto J., de Melo C. M., Lima Ribeiro S. M. Effects of three-month intake of synbiotic on inflammation and body composition in the elderly: a pilot study. Nutrients. 2013;5(4):1276–1286. doi: 10.3390/nu5041276.
    1. Wang H., Lee I.-S., Braun C., Enck P. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. Journal of Neurogastroenterology and Motility. 2016;22(4):589–605. doi: 10.5056/jnm16018.

Source: PubMed

3
Subscribe