The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis

Hebe N Gouda, Gurdeep S Sagoo, Anne-Helen Harding, Jan Yates, Manjinder S Sandhu, Julian P T Higgins, Hebe N Gouda, Gurdeep S Sagoo, Anne-Helen Harding, Jan Yates, Manjinder S Sandhu, Julian P T Higgins

Abstract

The peroxisome proliferator-activated receptor-gamma gene (PPARG) has been implicated in the etiology of type 2 diabetes mellitus and has been investigated in numerous epidemiologic studies. In this Human Genome Epidemiology review, the authors assessed this relation in an updated meta-analysis of 60 association studies. Electronic literature searches were conducted on September 14, 2009. Population-based cohort, case-control, cross-sectional, or genome-wide association studies reporting associations between the PPARG Pro12Ala gene variant (rs1801282) and type 2 diabetes were included. An updated literature-based meta-analysis involving 32,849 type 2 diabetes cases and 47,456 controls in relation to the PPARG Pro12Ala variant was conducted. The combined overall odds ratio, calculated by per-allele genetic model random-effects meta-analysis for type 2 diabetes and the Pro12Ala polymorphism, was 0.86 (95% confidence interval: 0.81, 0.90). The analysis indicated a moderate level of heterogeneity attributable to genuine variation in gene effect size (I(2) = 37%). This may reflect the variation observed between ethnic populations and/or differences in body mass index. Work on PPARG Pro12Ala should now focus on the observed heterogeneity in the magnitude of the association between populations. Further investigations into gene-gene and gene-environment interactions may prove enlightening.

Figures

Figure 1.
Figure 1.
Results from random-effects meta-analyses of studies of the peroxisome proliferator-activated receptor-γ2 (PPARG2) Pro12Ala gene variant and type 2 diabetes according to various study-level characteristics. BMI, body mass index (weight (kg)/height (m)2); CI, confidence interval; GWA, genome-wide association.

References

    1. Michalik L, Auwerx J, Berger JP, et al. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006;58(4):726–741.
    1. Spiegelman BM. PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998;47(4):507–514.
    1. Dubuquoy L, Dharancy S, Nutten S, et al. Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet. 2002;360(9343):1410–1418.
    1. Mukherjee R, Jow L, Croston GE, et al. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARγ2 versus PPARγ1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem. 1997;272(12):8071–8076.
    1. Fajas L, Auboeuf D, Raspé E, et al. The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem. 1997;272(30):18779–18789.
    1. Paracchini V, Pedotti P, Taioli E. Genetics of leptin and obesity: a HuGE review. Am J Epidemiol. 2005;162(2):101–114.
    1. Yen CJ, Beamer BA, Negri C, et al. Molecular scanning of the human peroxisome proliferator activated receptor γ (hPPARγ) gene in diabetic Caucasians: identification of a Pro12Ala PPARγ 2 missense mutation. Biochem Biophys Res Commun. 1997;241(2):270–274.
    1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053.
    1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414(6865):782–787.
    1. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352(9131):837–853.
    1. Freeman H, Cox RD. Type-2 diabetes: a cocktail of genetic discovery. Hum Mol Genet. 2006;15(spec no. 2):R202–R209.
    1. Gloyn AL. The search for type 2 diabetes genes. Ageing Res Rev. 2003;2(2):111–127.
    1. McCarthy MI. Progress in defining the molecular basis of type 2 diabetes mellitus through susceptibility-gene identification. Hum Mol Genet. 2004;13(spec no. 1):R33–R41.
    1. Zeggini E. A new era for type 2 diabetes genetics. Diabet Med. 2007;24(11):1181–1186.
    1. Frazer KA, Murray SS, Schork NJ, et al. Human genetic variation and its contribution to complex traits. Nat Rev Genet. 2009;10(4):241–251.
    1. Frayling TM. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat Rev Genet. 2007;8(9):657–662.
    1. McCarthy MI. Casting a wider net for diabetes susceptibility genes. Nat Genet. 2008;40(9):1039–1040.
    1. Higgins JP, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1 (Updated September 2008) London, United Kingdom: John Wiley & Sons Ltd; 2008.
    1. Sagoo GS, Little J, Higgins JP. Systematic reviews of genetic association studies [electronic article] PLoS Med. 2009;6(3):e28.
    1. Little J, Higgins JP, editors. The HuGENet™ HuGE Review Handbook, Version 1.0. Ottawa, Ontario, Canada: HuGENet Canada Coordinating Centre; 2008. ( ). (Accessed November 29, 2008)
    1. Hindorff LA, Junkins HA, Mehta JP, et al. A Catalog of Published Genome-Wide Association Studies. Bethesda, MD: Office of Population Genomics, National Human Genome Research Institute; 2008. ( ). (Accessed November 11, 2008)
    1. Minelli C, Thompson JR, Tobin MD, et al. An integrated approach to the meta-analysis of genetic association studies using Mendelian randomization. Am J Epidemiol. 2004;160(5):445–452.
    1. Harbord RM, Egger M, Sterne JA. A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med. 2006;25(20):3443–3457.
    1. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188.
    1. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
    1. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–645.
    1. Day N, Oakes S, Luben R, et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br J Cancer. 1999;80(suppl 1):95–103.
    1. Department of Noncommunicable Disease Surveillance, World Health Organization. Diagnosis and Classification of Diabetes Mellitus: Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Report of a WHO Consultation. Geneva, Switzerland: World Health Organization; 1999.
    1. Ludovico O, Pellegrini F, Di Paola R, et al. Heterogeneous effect of peroxisome proliferator-activated receptor γ2 Ala12 variant on type 2 diabetes risk. Obesity (Silver Spring) 2007;15(5):1076–1081.
    1. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80.
    1. Ek J, Andersen G, Urhammer SA, et al. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPAR-γ2) gene in relation to insulin sensitivity among glucose tolerant Caucasians. Diabetologia. 2001;44(9):1170–1176.
    1. Vardarli I. Is the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene associated with type 2 diabetes? A meta-analysis [abstract] Diabetologia. 2007;50(suppl):S538.
    1. Hara K, Yamauchi T, Kubota N, et al. The role of PPARγ in the onset of type 2 diabetes [in Japanese] Nippon Yakurigaku Zasshi. 2003;122(4):317–324.
    1. Lohmueller KE, Pearce CL, Pike M, et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet. 2003;33(2):177–182.
    1. Parikh H, Groop L. Candidate genes for type 2 diabetes. Rev Endocr Metab Disord. 2004;5(2):151–176.
    1. Ioannidis JP, Boffetta P, Little J, et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol. 2008;37(1):120–132.
    1. Colhoun HM, McKeigue PM, Davey Smith G. Problems of reporting genetic associations with complex outcomes. Lancet. 2003;361(9360):865–872.
    1. Ioannidis JP, Trikalinos TA, Ntzani EE, et al. Genetic associations in large versus small studies: an empirical assessment. Lancet. 2003;361(9357):567–571.
    1. Masud S, Ye S. Effect of the peroxisome proliferator activated receptor-γ gene Pro12Ala variant on body mass index: a meta-analysis. J Med Genet. 2003;40(10):773–780.
    1. Luan J, Browne PO, Harding AH. Evidence for gene-nutrient interaction at the PPARγ locus. Diabetes. 2001;50(3):686–689.
    1. Robitaille J, Després JP, Pérusse L, et al. The PPAR-gamma P12A polymorphism modulates the relationship between dietary fat intake and components of the metabolic syndrome: results from the Québec Family Study. Clin Genet. 2003;63(2):109–116.
    1. Morini E, Tassi V, Capponi D, et al. Interaction between PPARγ2 variants and gender on the modulation of body weight. Obesity (Silver Spring) 2008;16(6):1467–1470.
    1. Mattevi VS, Zembrzuski VM, Hutz MH, et al. Effects of a PPARG gene variant on obesity characteristics in Brazil. Braz J Med Biol Res. 2007;40(7):927–932.
    1. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20(3):284–287.
    1. Masugi J, Tamori Y, Mori H, et al. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-γ 2 on thiazolidinedione-induced adipogenesis. Biochem Biophys Res Commun. 2000;268(1):178–182.
    1. Werman A, Hollenberg A, Solanes G, et al. Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARγ). Differential activity of PPARγ1 and -2 isoforms and influence of insulin. J Biol Chem. 1997;272(32):20230–20235.
    1. Argmann CA, Cock TA, Auwerx J. Peroxisome proliferator-activated receptor γ: the more the merrier? Eur J Clin Invest. 2005;35(2):82–92.
    1. Joffe B, Zimmet P. The thrifty genotype in type 2 diabetes: an unfinished symphony moving to its finale? Endocrine. 1998;9(2):139–141.
    1. Neel JV. Diabetes mellitus: a "thrifty" genotype rendered detrimental by "progress"? Am J Hum Genet. 1962;14(4):353–362.
    1. Ruiz-Narváez E. Is the Ala12 variant of the PPARG gene an "unthrifty allele"? J Med Genet. 2005;42(7):547–550.
    1. Day C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med. 1999;16(3):179–192.
    1. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ) J Biol Chem. 1995;270(22):12953–12956.

Source: PubMed

3
Subscribe