Methylenetetrahydrofolate reductase C677T polymorphism is associated with estimated glomerular filtration rate in hypertensive Chinese males

Qing Dong, Genfu Tang, Mingli He, Yunqing Cai, Yefeng Cai, Houxun Xing, Liming Sun, Jianping Li, Yan Zhang, Fangfang Fan, Binyan Wang, Ningling Sun, Lisheng Liu, Xiping Xu, Fanfan Hou, Hongbing Shen, Xin Xu, Yong Huo, Qing Dong, Genfu Tang, Mingli He, Yunqing Cai, Yefeng Cai, Houxun Xing, Liming Sun, Jianping Li, Yan Zhang, Fangfang Fan, Binyan Wang, Ningling Sun, Lisheng Liu, Xiping Xu, Fanfan Hou, Hongbing Shen, Xin Xu, Yong Huo

Abstract

Background: Plasma level of total homocysteine (tHcy) is negatively correlated with kidney function in general population. However, the causal mechanism of this correlation is poorly understood. The purpose of this study is to investigate the association of methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism, which is a major genetic determinant of the plasma tHcy level, with estimated glomerular filtration rate (eGFR) in Chinese.

Methods: A total of 18 814 hypertensive patients (6,914 males, 11,900 females) were included in the study.

Results: Association between the eGFR and MTHFR C677T genotype was examined by sex-specific regression analyses. In males, TT genotype was associated with 1.37 ml/min/1.73 m(2) decrease in eGFR (p = 0.004) and with an increased risk (OR = 1.32, p = 0.008) for the lowest quintile of eGFR after adjusting for age, BMI, and blood pressures. However, such association was not observed in females (p > 0.05). This association suggests MTHFR C677T polymorphism may play a role in the regulation of eGFR in males.

Conclusions: MTHFR 677 T is a risk allele for decreased kidney function in Chinese males, implicating this gene in the pathogenesis of chronic kidney disease (CKD).

Figures

Figure 1
Figure 1
The density curves of eGFR. eGFR = estimated glomerular filtration rate, eGFR was in unit of ml/min/1.73 m2

References

    1. Foley RN, Wang C, Collins AJ. Cardiovascular risk factor profiles and kidney function stage in the US general population: the NHANES III study. Mayo Clin Proc. 2005;80:1270–1277. doi: 10.4065/80.10.1270.
    1. Ruan L, Chen W, Srinivasan SR, Xu J, Toprak A, Berenson GS. Plasma homocysteine is adversely associated with glomerular filtration rate in asymptomatic black and white young adults: the Bogalusa heart study. Eur J Epidemiol. 2009;24:315–319. doi: 10.1007/s10654-009-9340-0.
    1. Hwang SY, Woo CW, Au-Yeung KK, Siow YL, Zhu O K TY. Homocysteine stimulates monocyte chemoattractant protein-1 expression in the kidney via nuclear factor-kappaB activation. Am J Physiol Renal Physiol. 2008;294:F236–F244.
    1. Ingram AJ, Krepinsky JC, James L, Austin RC, Tang D, Salapatek AM, Thai K, Scholey JW. Activation of mesangial cell MAPK in response to homocysteine. Kidney Int. 2004;66:733–745. doi: 10.1111/j.1523-1755.2004.00795.x.
    1. Kumagai H, Katoh S, Hirosawa K, Kimura M, Hishida A, Ikegaya N. Renal tubulointerstitial injury in weanling rats with hyperhomocysteinemia. Kidney Int. 2002;62:1219–1228. doi: 10.1111/j.1523-1755.2002.kid558.x.
    1. Yi F, dos Santos EA, Xia M, Chen QZ, Li PL, Li N. Podocyte injury and glomerulosclerosis in hyperhomocysteinemic rats. Am J Nephrol. 2007;27:262–268. doi: 10.1159/000101471.
    1. Yi F, Zhang AY, Li N, Muh RW, Fillet M, Renert AF, Li PL. Inhibition of ceramide-redox signaling pathway blocks glomerular injury in hyperhomocysteinemic rats. Kidney Int. 2006;70:88–96. doi: 10.1038/sj.ki.5001517.
    1. Fox CS, Gona P, Larson MG, Selhub J, Tofler G, Hwang SJ, Meigs JB, Levy D, Wang TJ, Jacques PF. et al.A multi-marker approach to predict incident CKD and microalbuminuria. J Am Soc Nephrol. 2010;21:2143–2149. doi: 10.1681/ASN.2010010085.
    1. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP. et al.A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–113. doi: 10.1038/ng0595-111.
    1. Kelly PJ, Rosand J, Kistler JP, Shih VE, Silveira S, Plomaritoglou A, Furie KL. Homocysteine, MTHFR 677 C– > T polymorphism, and risk of ischemic stroke: results of a meta-analysis. Neurology. 2002;59:529–536. doi: 10.1212/WNL.59.4.529.
    1. Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG. MTHFR 677 C– > T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002;288:2023–2031. doi: 10.1001/jama.288.16.2023.
    1. Botto LD, Yang Q. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol. 2000;151:862–877. doi: 10.1093/oxfordjournals.aje.a010290.
    1. Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry. 2006;11:143–149. doi: 10.1038/sj.mp.4001746.
    1. Casas JP, Bautista LE, Smeeth L. et al.Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet. 2005;365(9455):224–232.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. 604.
    1. R Development Core Team. R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2011. ISBN 3-900051-07-0, (2011)
    1. Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD. Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet. 2005;365:224–232.

Source: PubMed

3
Subscribe