Epidemiology, practice of ventilation and outcome for patients at increased risk of postoperative pulmonary complications: LAS VEGAS - an observational study in 29 countries

LAS VEGAS investigators

Abstract

Background: Limited information exists about the epidemiology and outcome of surgical patients at increased risk of postoperative pulmonary complications (PPCs), and how intraoperative ventilation was managed in these patients.

Objectives: To determine the incidence of surgical patients at increased risk of PPCs, and to compare the intraoperative ventilation management and postoperative outcomes with patients at low risk of PPCs.

Design: This was a prospective international 1-week observational study using the 'Assess Respiratory Risk in Surgical Patients in Catalonia risk score' (ARISCAT score) for PPC for risk stratification.

Patients and setting: Adult patients requiring intraoperative ventilation during general anaesthesia for surgery in 146 hospitals across 29 countries.

Main outcome measures: The primary outcome was the incidence of patients at increased risk of PPCs based on the ARISCAT score. Secondary outcomes included intraoperative ventilatory management and clinical outcomes.

Results: A total of 9864 patients fulfilled the inclusion criteria. The incidence of patients at increased risk was 28.4%. The most frequently chosen tidal volume (VT) size was 500 ml, or 7 to 9 ml kg predicted body weight, slightly lower in patients at increased risk of PPCs. Levels of positive end-expiratory pressure (PEEP) were slightly higher in patients at increased risk of PPCs, with 14.3% receiving more than 5 cmH2O PEEP compared with 7.6% in patients at low risk of PPCs (P < 0.001). Patients with a predicted preoperative increased risk of PPCs developed PPCs more frequently: 19 versus 7%, relative risk (RR) 3.16 (95% confidence interval 2.76 to 3.61), P < 0.001) and had longer hospital stays. The only ventilatory factor associated with the occurrence of PPCs was the peak pressure.

Conclusion: The incidence of patients with a predicted increased risk of PPCs is high. A large proportion of patients receive high VT and low PEEP levels. PPCs occur frequently in patients at increased risk, with worse clinical outcome.

Trial registration: The study was registered at Clinicaltrials.gov, number NCT01601223.

Figures

Fig. 1
Fig. 1
Flow chart: Data collection and selection of centres and patients. Two centres used the optional randomisation program to reduce the number of patients: one centre reduced the patient numbers by 50% (excluding 75 patients) and another centre by 75% (excluding 307 patients). ARISCAT, Assess Respiratory Risk in Surgical Patients in Catalonia; IRB, institutional review board.
Fig. 2
Fig. 2
Ventilation parameters in patients at increased vs. patients at low risk of PPCs. (a) Cumulative frequency distribution of tidal volume; (b) cumulative frequency distribution of positive end-expiratory pressure; (c) cumulative distribution of peak pressure; (d) cumulative distribution of driving pressure. PBW, predicted body weight; PEEP, positive end-expiratory pressure; PPC, postoperative pulmonary complications; VT, tidal volume.
Fig. 3
Fig. 3
Scatterplots showing distribution of (a) tidal volume with positive end-expiratory pressure combinations; (b) tidal volume with peak pressure; (c) tidal volume with driving pressure; (d) tidal volume with respiratory rate in patients at increased vs. patients at low risk of PPCs. bpm, breaths per minute; PBW, predicted body weight; PEEP, positive end-expiratory pressure; PPC, postoperative pulmonary complications; VT, tidal volume.
Fig. 4
Fig. 4
Outcome in patients at increased vs. patients at low risk of PPCs. (a) Probability of development of PPCs; (b) probability of hospital discharge; and (c) probability of in-hospital mortality. PPC, postoperative pulmonary complications.
Fig. 5
Fig. 5
Outcome in patients at low, moderate, and high risk of PPCs: (a) probability of development of PPCs; (b) probability of hospital discharge; and (c) probability of in-hospital mortality. PPC, postoperative pulmonary complications.

References

    1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med 2013; 369:2126–2136.
    1. Putensen C, Theuerkauf N, Zinserling J, et al. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med 2009; 151:566–576.
    1. Serpa Neto A, Nagtzaam L, Schultz MJ. Ventilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and meta-analysis. Curr Opin Crit Care 2014; 20:25–32.
    1. Serpa Neto A, Simonis FD, Barbas CS, et al. Association between tidal volume size, duration of ventilation, and sedation needs in patients without acute respiratory distress syndrome: an individual patient data meta-analysis. Intensive Care Med 2014; 40:950–957.
    1. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 2010; 303:865–873.
    1. Bellani G, Laffey JG, Pham T, et al. for LUNG SAFE Investigators and the ESICM Trials Group. The LUNG SAFE study: a presentation of the prevalence of ARDS according to the Berlin Definition. Crit Care 2016; 20:268.
    1. Serpa Neto A, Barbas CS, Simonis FD, et al. Epidemiology, practice of ventilation and outcome for patients at risk of ARDS in intensive care units in 16 countries. Lancet Resp Med 2016; 4:882–893.
    1. Schultz MJ, Haitsma JJ, Slutsky AS, et al. What tidal volumes should be used in patients without acute lung injury? Anesthesiology 2007; 106:1226–1231.
    1. Severgnini P, Selmo G, Lanza C, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 2013; 118:1307–1321.
    1. Futier E, Constantin JM, Paugam-Burtz C, et al. for IMPROVE Study Group. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med 2013; 369:428–437.
    1. Ge Y, Yuan L, Jiang X, et al. Effect of lung protection mechanical ventilation on respiratory function in the elderly undergoing spinal fusion. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2013; 38:81–85.
    1. Güldner A, Kiss T, Serpa Neto A, et al. Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications: a comprehensive review of the role of tidal volume, positive end-expiratory pressure, and lung recruitment maneuvers. Anesthesiology 2015; 123:692–713.
    1. Hedenstierna G, Edmark L. Mechanisms of atelectasis in the perioperative period. Best Pract Res Clin Anaesthesiol 2010; 24:157–169.
    1. Serpa Neto A, Hemmes SN, Barbas CS, et al. for PROVE Network Investigators. Protective ventilation with lower tidal volumes and high PEEP versus conventional ventilation with high tidal volume and low PEEP in patients under general anesthesia for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology 2015; 123:66–78.
    1. Serpa Neto A, Hemmes SN, Barbas CS, et al. for PROVE Network Investigators. Incidence of mortality and morbidity related to postoperative lung injury in patients who have undergone abdominal or thoracic surgery: a systematic review and meta-analysis. Lancet Respir Med 2014; 2:1007–1015.
    1. Weiser TG, Regenbogen SE, Thompson KD, et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 2008; 372:139–144.
    1. Canet J, Gallart L, Gomar C, et al. for the ARISCAT Group. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology 2010; 113:1338–1350.
    1. Mazo V, Sabate S, Canet J, et al. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology 2014; 121:219–231.
    1. International Conference on Harmonisation (ICH). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use: ICH Harmonised Tripartite Guideline: Guideline for Good Clinical Practice. J Postgrad Med 2001; 47:199–203.
    1. Arozullah AM, Daley J, Henderson WG, et al. Multifactorial risk index for predicting postoperative respiratory failure in men after major noncardiac surgery. The National Veterans Administration Surgical Quality Improvement Program. Ann Surg 2000; 232:242–253.
    1. Arozullah AM, Khuri SF, Henderson WG, et al. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med 2001; 135:847–857.
    1. Smetana GW, Lawrence VA, Cornell JE. Preoperative pulmonary risk stratification for noncardiothoracic surgery: systematic review for the American College of Physicians. Ann Intern Med 2006; 144:581–595.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, et al. for the ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012; 307:2526–2533.
    1. Hemmes SN, de Abreu MG, Pelosi P, et al. ESA Clinical Trials Network 2012: LAS VEGAS – Local Assessment of Ventilatory Management during General Anaesthesia for Surgery and its effects on Postoperative Pulmonary Complications: a prospective, observational, international, multicentre cohort study. Eur J Anaesthesiol 2013; 30:205–207.
    1. Karalapillai D, Weinberg L, Galtieri J, et al. Current ventilation practice during general anaesthesia: a prospective audit in Melbourne, Australia. BMC Anesthesiol 2014; 14:85.
    1. Bender SP, Paganelli WC, Gerety LP, et al. Intraoperative lung-protective ventilation trends and practice patterns: a report from the multicenter perioperative outcomes group. Anesth Analg 2015; 121:1231–1239.
    1. Wanderer JP, Ehrenfeld JM, Epstein RH, et al. Temporal trends and current practice patterns for intraoperative ventilation at U.S. academic medical centers: a retrospective study. BMC Anesthesiol 2015; 15:40.
    1. Fernandez-Bustamante A, Frendl G, Sprung J, et al. Postoperative pulmonary complications, early mortality, and hospital stay following noncardiothoracic surgery: a multicenter study by the perioperative research network investigators. JAMA Surg 2017; 152:157–166.
    1. Ladha K, Vidal Melo M, McLean D, et al. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ 2015; 351:3646.
    1. PROVE Network Investigators. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 2014; 384:495–503.
    1. de Jong M, Ladha K, Melo M, et al. Differential effects of intraoperative positive end-expiratory pressure (PEEP) on respiratory outcome in major abdominal surgery versus craniotomy. Ann Surg 2016; 264:362–369.
    1. Serpa Neto A, Hemmes SN, Barbas CS, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med 2016; 4:272–280.
    1. Jammer I, Wickboldt N, Sander M, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions. Eur J Anaesthesiol 2014; 31:1–18.
    1. Canet J, Sabaté S, Mazo V, et al. for the PERISCOPE group. Development and validation of a score to predict postoperative respiratory failure in a multicentre European cohort: a prospective, observational study. Eur J Anaesthesiol 2015; 32:458–470.
    1. Ferrando C, Soro M, Canet J, et al. Rationale and study design for an individualized perioperative open lung ventilatory strategy (iPROVE): study protocol for a randomized controlled trial. Trials 2015; 16:193.
    1. Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001; 54:979–985.

Source: PubMed

3
Subscribe