Gene expression profiling in prognosis of distant recurrence in HR-positive and HER2-negative breast cancer patients

Tzu-Ting Huang, Nicolas Pennarun, Yu-Hao Cheng, Cheng-Fang Horng, Jason Lei, Skye Hung-Chun Cheng, Tzu-Ting Huang, Nicolas Pennarun, Yu-Hao Cheng, Cheng-Fang Horng, Jason Lei, Skye Hung-Chun Cheng

Abstract

There had been several studies using gene-expression profiling in predicting distant recurrence in breast cancer. In this study, we developed an 18-gene classifier (18-GC) to predict distant recurrence of breast cancer and compared it with the 21-gene panel (Oncotype DX®, ODx) in performance. Included were 224 breast cancer patients with positive hormonal receptor (HR+) and negative human epidermal growth factor receptor 2 (HER2-). We compared the demographic, clinical, and survival information of the patients, and further compared the prediction of recurrence risk obtained by using the 18-GC with that by ODx. To have the best combined sensitivity and specificity, receiver operating characteristics (ROC) curve analysis was performed to determine the cutoff values for several breakpoint scores. For the new 18-GC, a breakpoint score of 21 was adopted to produce a combined highest sensitivity (95%) and specificity (39%) in detecting distant recurrence. At this breakpoint score, 164 of the 224 patients were classified by the 18-GC in the same risk level as by ODx, giving a concordance rate of 73%. Along with patient age and tumor stage, this 18-GC was found to be an independent significant prognostic factor of distant metastasis of breast cancer. We have thus created a new gene panel assay for prediction of distant recurrence in HR+ and HER2- breast cancer patients. With a high concordance rate with ODx, this new assay may serve as a good tool for individual breast cancer patients to make an informed decision on whether adjuvant chemotherapy should be performed post-surgery.

Keywords: breast cancer; chemotherapy; distant recurrence prediction; gene expression profiling; microarray.

Conflict of interest statement

CONFLICTS OF INTEREST The author (SHC) owns a patent relating to the content of this manuscript (Taiwan patent number: 104115832). None of the authors has any conflicts of interests in this research, either financial or non-financial.

Figures

Figure 1. ROC curve analyses of the…
Figure 1. ROC curve analyses of the 18-GC and ODx
Figure 2. Summary of recurrence hazard ratios…
Figure 2. Summary of recurrence hazard ratios for different risk factors in subgroup analyses
Figure 3. Survival plot analysis of low-…
Figure 3. Survival plot analysis of low- and high-risk patients as determined by the 18-gene classifier

References

    1. Leong SP, Shen ZZ, Liu TJ, Agarwal G, Tajima T, Paik NS, Sandelin K, Derossis A, Cody H, Foulkes WD. Is breast cancer the same disease in Asian and Western countries? World J Surg. 2010;34:2308–24.
    1. Kim Y, Yoo KY, Goodman MT. Differences in incidence, mortality and survival of breast cancer by regions and countries in Asia and contributing factors. Asian Pac J Cancer Prev. 2015;16:2857–70.
    1. Binns C, Low WY, Lee MK. Breast cancer: an increasing public health problem in the Asia Pacific region. Asia Pac J Public Health. 2013;25:364–7.
    1. Chiang CJ, Lo WC, Yang YW, You SL, Chen CJ, Lai MS. Incidence and survival of adult cancer patients in Taiwan, 2002-2012. J Formos Med Assoc. 2016;115:1076–88.
    1. Shen YC, Chang CJ, Hsu C, Cheng CC, Chiu CF, Cheng AL. Significant difference in the trends of female breast cancer incidence between Taiwanese and Caucasian Americans: implications from age-period-cohort analysis. Cancer Epidemiol Biomarkers Prev. 2005;14:1986–90.
    1. Cancer Genome Atlas Network Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.
    1. Parise CA, Bauer KR, Brown MM, Caggiano V. Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999-2004. Breast J. 2009;15:593–602.
    1. Telli ML, Chang ET, Kurian AW, Keegan TH, McClure LA, Lichtensztajn D, Ford JM, Gomez SL. Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry. Breast Cancer Res Treat. 2011;127:471–8.
    1. Lin CH, Liau JY, Lu YS, Huang CS, Lee WC, Kuo KT, Shen YC, Kuo SH, Lan C, Liu JM, Kuo WH, Chang KJ, Cheng AL. Molecular subtypes of breast cancer emerging in young women in Taiwan: evidence for more than just westernization as a reason for the disease in Asia. Cancer Epidemiol Biomarkers Prev. 2009;18:1807–14.
    1. Arvold ND, Taghian AG, Niemierko A, Abi Raad RF, Sreedhara M, Nguyen PL, Bellon JR, Wong JS, Smith BL, Harris JR. Age, breast cancer subtype approximation, and local recurrence after breast-conserving therapy. J Clin Oncol. 2011;29:3885–91.
    1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.
    1. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220:263–80.
    1. Cheng SH, Yu BL, Horng CF, Tsai SY, Chen CM, Chu NM, Liu MC, Huang AT. In-Depth Evaluation of the AJCC 2010 Staging System for Luminal-like Breast Cancer --- An Analysis from a Free-Standing Cancer Hospital. Journal Cancer Research and Practice. 2013;30:21–34.
    1. Cheng SH, Yu BL, Horng CF, Tsai SY, Chen CM, Chu NM, Tsou MH, Lin CK, Shih LS, Liu MC. Long-term survival and stage I breast cancer subtypes. Journal of Cancer Research and Practice. 2016;3:1–8.
    1. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, Cronin M, Baehner FL, Watson D, Bryant J, Costantino JP, Geyer CE, Jr, Wickerham DL, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.
    1. Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, Pierga JY, Brain E, Causeret S, DeLorenzi M, Glas AM, Golfinopoulos V, Goulioti T, et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N Engl J Med. 2016;375:717–29.
    1. Varga Z, Sinn P, Fritzsche F, von Hochstetter A, Noske A, Schraml P, Tausch C, Trojan A, Moch H. Comparison of EndoPredict and Oncotype DX test results in hormone receptor positive invasive breast cancer. PLoS One. 2013;8:e58483.
    1. Iqbal J, Ginsburg O, Rochon PA, Sun P, Narod SA. Differences in breast cancer stage at diagnosis and cancer-specific survival by race and ethnicity in the United States. JAMA. 2015;313:165–73.
    1. Chlebowski RT, Chen Z, Anderson GL, Rohan T, Aragaki A, Lane D, Dolan NC, Paskett ED, McTiernan A, Hubbell FA, Adams-Campbell LL, Prentice R. Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst. 2005;97:439–48.
    1. Hausauer AK, Keegan TH, Chang ET, Clarke CA. Recent breast cancer trends among Asian/Pacific Islander, Hispanic, and African-American women in the US: changes by tumor subtype. Breast Cancer Res. 2007;9:R90.
    1. Cheng SH, Horng CF, Huang TT, Huang ES, Tsou MH, Shi LS, Yu BL, Chen CM, Huang AT. An Eighteen-Gene Classifier Predicts Locoregional Recurrence in Post-Mastectomy Breast Cancer Patients. EBioMedicine. 2016;5:74–81.
    1. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.
    1. Perkins NJ, Schisterman EF. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am J Epidemiol. 2006;163:670–5.
    1. Pittman J, Huang E, Dressman H, Horng CF, Cheng SH, Tsou MH, Chen CM, Bild A, Iversen ES, Huang AT, Nevins JR, West M. Integrated modeling of clinical and gene expression information for personalized prediction of disease outcomes. Proc Natl Acad Sci U S A. 2004;101:8431–6.
    1. Chen C, Dhanda R, Tseng WY, Forsyth M, Patt DA. Evaluating use characteristics for the oncotype dx 21-gene recurrence score and concordance with chemotherapy use in early-stage breast cancer. J Oncol Pract. 2013;9:182–7.
    1. Toi M, Iwata H, Yamanaka T, Masuda N, Ohno S, Nakamura S, Nakayama T, Kashiwaba M, Kamigaki S, Kuroi K, Japan Breast Cancer Research Group-Translational Research Group Clinical significance of the 21-gene signature (Oncotype DX) in hormone receptor-positive early stage primary breast cancer in the Japanese population. Cancer. 2010;116:3112–8.
    1. Pineda MD, White E, Kristal AR, Taylor V. Asian breast cancer survival in the US: a comparison between Asian immigrants, US-born Asian Americans and Caucasians. Int J Epidemiol. 2001;30:976–82.
    1. Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, Heikkilä P, Heikkinen T, Nevanlinna H, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010;7:e1000279.

Source: PubMed

3
Subscribe