The effect of supplemental oxygen on perioperative brain natriuretic peptide concentration in cardiac risk patients - a protocol for a prosprective randomized clinical trial

Christian Reiterer, Barbara Kabon, Markus Falkner von Sonnenburg, Patrick Starlinger, Alexander Taschner, Oliver Zotti, Julius Goshin, Gregor Drlicek, Edith Fleischmann, Christian Reiterer, Barbara Kabon, Markus Falkner von Sonnenburg, Patrick Starlinger, Alexander Taschner, Oliver Zotti, Julius Goshin, Gregor Drlicek, Edith Fleischmann

Abstract

Background: Elevated postoperative N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations are predictive for cardiac adverse events in noncardiac surgery. Studies indicate that supplemental oxygen decreases sympathetic nerve activity and might, therefore, improve cardiovascular function. Thus, we will test the effect of perioperative supplemental oxygen administration on NT-proBNP release after surgery.

Methods/design: We will conduct a single-center, double-blinded, randomized trial at the Medical University of Vienna, including 260 patients with increased cardiac risk factors undergoing moderate- to high-risk noncardiac surgery. Patients will be randomly assigned to receive 80% versus 30% oxygen during surgery and for 2 h postoperatively. The primary outcome will be the difference in maximum NT-proBNP release after surgery. As secondary outcomes we will assess the effect of supplemental oxygen on postoperative maximum troponin T concentration, oxidation-reduction potential, von Willebrand factor concentration and perioperative fluid requirements. We will perform outcome measurements 2 h after surgery, on postoperative day 1 and on postoperative day 3. The NT-proBNP concentration and the oxidation-reduction potential will also be measured within 72 h before discharge.

Discussion: Our trial should determine whether perioperative supplemental oxygen administration will reduce the postoperative release of NT-proBNP in patients with preoperative increased cardiovascular risk factors undergoing noncardiac surgery.

Trial registration: ClinicalTrials.gov, ID: NCT03366857. Registered on 8th December 2017.

Conflict of interest statement

Not applicable

Figures

Fig. 1
Fig. 1
Study flow chart. BNP brain natriuretic peptide, TnT troponin T, sORP static oxidation-reduction potential, cORP oxidation-reduction potential capacity, POD postoperative day

References

    1. Devereaux PJ, et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317(16):1642–1651. doi: 10.1001/jama.2017.4360.
    1. Smilowitz NR, et al. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol. 2017;2(2):181–187. doi: 10.1001/jamacardio.2016.4792.
    1. Pryor KO, Fahey TJI, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population—A randomized controlled trial. JAMA. 2004;291(1):79–87. doi: 10.1001/jama.291.1.79.
    1. Belda JF, et al. Supplemental perioperative oxygen and the risk of surgical wound infection. JAMA. 2005;294(16):2035–2042. doi: 10.1001/jama.294.16.2035.
    1. Greif R, et al. Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med. 2000;342(3):161–167. doi: 10.1056/NEJM200001203420303.
    1. Kurz A, et al. Supplemental oxygen and surgical-site infections: an alternating intervention controlled trial. Br J Anaesth. 2018;120(1):117–126. doi: 10.1016/j.bja.2017.11.003.
    1. Fonnes S, et al. Perioperative hyperoxia—Long-term impact on cardiovascular complications after abdominal surgery, a post hoc analysis of the PROXI trial. Int J Cardiol. 2016;215:238–243. doi: 10.1016/j.ijcard.2016.04.104.
    1. Stub D, et al. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131(24):2143–2150. doi: 10.1161/CIRCULATIONAHA.114.014494.
    1. Kemming GI, et al. Hyperoxic ventilation at the critical hematocrit: effects on myocardial perfusion and function. Acta Anaesthesiol Scand. 2004;48(8):951–959. doi: 10.1111/j.0001-5172.2004.00460.x.
    1. Meier J, Kemming GI, Kisch-Wedel H, Wölkhammer S, Habler OP. Hyperoxic ventilation reduces 6-hour mortality at the critical hemoglobin concentration. Anesthesiology. 2004;100(1):70–76. doi: 10.1097/00000542-200401000-00014.
    1. Farquhar H, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158(3):371–377. doi: 10.1016/j.ahj.2009.05.037.
    1. Shigemitsu M, et al. Nocturnal oxygen therapy prevents progress of congestive heart failure with central sleep apnea. Int J Cardiol. 2007;115(3):354–360. doi: 10.1016/j.ijcard.2006.03.018.
    1. Rodseth RN. B type natriuretic peptide—A diagnostic breakthrough in peri-operative cardiac risk assessment? Anaesthesia. 2009;64(2):165–178. doi: 10.1111/j.1365-2044.2008.05689.x.
    1. Duceppe E, et al. Canadian Cardiovascular Society Guidelines on perioperative cardiac risk assessment and management for patients who undergo noncardiac surgery. Can J Cardiol. 2017;33(1):17–32. doi: 10.1016/j.cjca.2016.09.008.
    1. Karthikeyan G, et al. Is a pre-operative brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide measurement an independent predictor of adverse cardiovascular outcomes within 30 days of noncardiac surgery? A systematic review and meta-analysis of observational. J Am Coll Cardiol. 2009;54(17):1599–1606. doi: 10.1016/j.jacc.2009.06.028.
    1. Rodseth RN, et al. Postoperative B-type natriuretic peptide for prediction of major cardiac events in patients undergoing noncardiac surgery: systematic review and individual patient meta-analysis. Anesthesiology. 2013;119(2):270–283. doi: 10.1097/ALN.0b013e31829083f1.
    1. Gan TJ, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–826. doi: 10.1097/00000542-200210000-00012.
    1. Feldheiser A, et al. Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm. Br J Anaesth. 2012;110(2):231–240. doi: 10.1093/bja/aes377.
    1. Akça O, et al. Comparable postoperative pulmonary atelectasis in patients given 30% or 80% oxygen during and 2 hours after colon resection. Anesthesiology. 1999;91(4):991–998. doi: 10.1097/00000542-199910000-00019.
    1. Meyhoff C, Wetterslev J. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery. JAMA. 2009;302(14):1543–1550. doi: 10.1001/jama.2009.1452.
    1. Thygesen K, et al. Universal definition of myocardial infarction (2018) Circulation. 2019;40:237–269.
    1. Kirchhof P, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–2962. doi: 10.1093/eurheartj/ehw210.
    1. Devereaux PJ, Szczeklik W. Myocardial injury after non-cardiac surgery: diagnosis and management. Eur Heart J. 2019;0:1–9. 10.1093/eurheartj/ehz301.
    1. Ruetzler K, et al. Supplemental intraoperative oxygen does not promote acute kidney injury or cardiovascular complications after noncardiac surgery: subanalysis of an alternating intervention trial. Anesth Analg. 2019;130(4):933–940. doi: 10.1213/ANE.0000000000004359.
    1. Kabon B, Sessler DI, Kurz A. Effect of intraoperative goal-directed balanced crystalloid versus colloid administration on major postoperative morbidity. Anesthesiology. 2019;130(5):728–744. doi: 10.1097/ALN.0000000000002601.
    1. Modun D, et al. Plasma nitrite concentration decreases after hyperoxia-induced oxidative stress in healthy humans. Clin Physiol Funct Imaging. 2012;32(5):404–408. doi: 10.1111/j.1475-097X.2012.01133.x.
    1. Loiseaux-Meunier MN, et al. Oxygen toxicity: simultaneous measure of pentane and malondialdehyde in humans exposed to hyperoxia. Biomed Pharmacother. 2001;55(3):163–169. doi: 10.1016/S0753-3322(01)00042-7.
    1. Liu Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke. 1998;29(8):1679–1686. doi: 10.1161/01.STR.29.8.1679.
    1. Bernardo A, et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2009;104(1):100–106. doi: 10.1182/blood-2004-01-0107.
    1. Kiers D, et al. Short-term hyperoxia does not exert immunologic effects during experimental murine and human endotoxemia. Sci Rep. 2015;5:17441. doi: 10.1038/srep17441.
    1. Rousseau A, Bak Z, Janerot-Sjöberg B, Sjöberg F. Acute hyperoxaemia-induced effects on regional blood flow, oxygen consumption and central circulation in man. Acta Physiol Scand. 2005;183(3):231–240. doi: 10.1111/j.1365-201X.2005.01405.x.

Source: PubMed

3
Subscribe