A meta-analysis of gene expression signatures of blood pressure and hypertension

Tianxiao Huan, Tõnu Esko, Marjolein J Peters, Luke C Pilling, Katharina Schramm, Claudia Schurmann, Brian H Chen, Chunyu Liu, Roby Joehanes, Andrew D Johnson, Chen Yao, Sai-Xia Ying, Paul Courchesne, Lili Milani, Nalini Raghavachari, Richard Wang, Poching Liu, Eva Reinmaa, Abbas Dehghan, Albert Hofman, André G Uitterlinden, Dena G Hernandez, Stefania Bandinelli, Andrew Singleton, David Melzer, Andres Metspalu, Maren Carstensen, Harald Grallert, Christian Herder, Thomas Meitinger, Annette Peters, Michael Roden, Melanie Waldenberger, Marcus Dörr, Stephan B Felix, Tanja Zeller, International Consortium for Blood Pressure GWAS (ICBP), Ramachandran Vasan, Christopher J O'Donnell, Peter J Munson, Xia Yang, Holger Prokisch, Uwe Völker, Joyce B J van Meurs, Luigi Ferrucci, Daniel Levy, Tianxiao Huan, Tõnu Esko, Marjolein J Peters, Luke C Pilling, Katharina Schramm, Claudia Schurmann, Brian H Chen, Chunyu Liu, Roby Joehanes, Andrew D Johnson, Chen Yao, Sai-Xia Ying, Paul Courchesne, Lili Milani, Nalini Raghavachari, Richard Wang, Poching Liu, Eva Reinmaa, Abbas Dehghan, Albert Hofman, André G Uitterlinden, Dena G Hernandez, Stefania Bandinelli, Andrew Singleton, David Melzer, Andres Metspalu, Maren Carstensen, Harald Grallert, Christian Herder, Thomas Meitinger, Annette Peters, Michael Roden, Melanie Waldenberger, Marcus Dörr, Stephan B Felix, Tanja Zeller, International Consortium for Blood Pressure GWAS (ICBP), Ramachandran Vasan, Christopher J O'Donnell, Peter J Munson, Xia Yang, Holger Prokisch, Uwe Völker, Joyce B J van Meurs, Luigi Ferrucci, Daniel Levy

Abstract

Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Effect size of differentially expressed…
Fig 1. Effect size of differentially expressed BP genes in the Framingham Heart Study and the Illumina cohorts.
A) SBP; B) DBP; C) HTN. The x-axis is the effect size of the differentially expressed genes in the FHS cohort and the y-axis is the effect size in the Illumina cohorts. The BP signature genes identified both in the FHS and the Illumina cohorts at p<0.05 (Bonferroni corrected) are highlighted. pi1 values indicate the proportion of significant signals among the tested associations [11] (See details in the Methods section).
Fig 2. Global view of BP eQTLs…
Fig 2. Global view of BP eQTLs effects on differentially expressed BP signature genes.
A) 2-Dimensional plot of in whole blood eQTLs vs. transcript position genome wide. eQTL-transcript pairs at FDRp values in ICBP GWAS [3]. Color coding indicates the strength (measured by r2) of LD of each SNP with the top SNP (rs3184504). Five master trans-eQTLs (also BP GWAS SNPs) for BP signature genes are labeled in the figure. This figure was drawn by LocusZoom [32].

References

    1. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, et al. (2003) Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42: 1206–1252.
    1. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet 41: 677–687. 10.1038/ng.384
    1. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103–109. 10.1038/nature10405
    1. Leonardson AS, Zhu J, Chen Y, Wang K, Lamb JR, et al. (2010) The effect of food intake on gene expression in human peripheral blood. Hum Mol Genet 19: 159–169. 10.1093/hmg/ddp476
    1. Zeller T, Wild P, Szymczak S, Rotival M, Schillert A, et al. (2010) Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One 5: e10693 10.1371/journal.pone.0010693
    1. Bull TM, Coldren CD, Moore M, Sotto-Santiago SM, Pham DV, et al. (2004) Gene microarray analysis of peripheral blood cells in pulmonary arterial hypertension. Am J Respir Crit Care Med 170: 911–919.
    1. Korkor MT, Meng FB, Xing SY, Zhang MC, Guo JR, et al. (2011) Microarray analysis of differential gene expression profile in peripheral blood cells of patients with human essential hypertension. Int J Med Sci 8: 168–179.
    1. Hofman A, van Duijn CM, Franco OH, Ikram MA, Janssen HL, et al. (2011) The Rotterdam Study: 2012 objectives and design update. Eur J Epidemiol 26: 657–686. 10.1007/s10654-011-9610-5
    1. Schurmann C, Heim K, Schillert A, Blankenberg S, Carstensen M, et al. (2012) Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium. PloS one 7: e50938 10.1371/journal.pone.0050938
    1. Volzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, et al. (2011) Cohort profile: the study of health in Pomerania. Int J Epidemiol 40: 294–307. 10.1093/ije/dyp394
    1. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences 100: 9440–9445.
    1. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, et al. (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature genetics 45: 1238–1243. 10.1038/ng.2756
    1. Joehanes R., Huan T., C Yao, X Zhang, S Ying, et al. (2013) Genome-wide Expression Quantitative Trait Loci: Results from the NHLBI’s SABRe CVD Initiative. the American Society of Human Genetics (ASHG) conference. Boston Convention Ctr. Boston, MA.
    1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106: 9362–9367. 10.1073/pnas.0903103106
    1. Rowland NE, Li BH, Fregly MJ, Smith GC (1995) Fos induced in brain of spontaneously hypertensive rats by angiotensin II and co-localization with AT-1 receptors. Brain Res 675: 127–134.
    1. Beetz N, Harrison MD, Brede M, Zong X, Urbanski MJ, et al. (2009) Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J Clin Invest 119: 3597–3612. 10.1172/JCI38433
    1. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, et al. (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90: 291–366. 10.1152/physrev.00021.2009
    1. Felix JP, Priest BT, Solly K, Bailey T, Brochu RM, et al. (2012) The inwardly rectifying potassium channel Kir1.1: development of functional assays to identify and characterize channel inhibitors. Assay Drug Dev Technol 10: 417–431. 10.1089/adt.2012.462
    1. Fang L, Li D, Welling PA (2010) Hypertension resistance polymorphisms in ROMK (Kir1.1) alter channel function by different mechanisms. Am J Physiol Renal Physiol 299: F1359–1364. 10.1152/ajprenal.00257.2010
    1. Cappuccio FP, MacGregor GA (1991) Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J Hypertens 9: 465–473.
    1. Geleijnse JM, Kok FJ, Grobbee DE (2003) Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens 17: 471–480.
    1. Fulgoni VL 3rd (2007) Limitations of data on fluid intake. J Am Coll Nutr 26: 588S−591S.
    1. Koliaki C, Katsilambros N (2013) Dietary sodium, potassium, and alcohol: key players in the pathophysiology, prevention, and treatment of human hypertension. Nutr Rev 71: 402–411. 10.1111/nure.12036
    1. Morton J, Coles B, Wright K, Gallimore A, Morrow JD, et al. (2008) Circulating neutrophils maintain physiological blood pressure by suppressing bacteria and IFNgamma-dependent iNOS expression in the vasculature of healthy mice. Blood 111: 5187–5194. 10.1182/blood-2007-10-117283
    1. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, et al. (2011) Inflammation, immunity, and hypertension. Hypertension 57: 132–140. 10.1161/HYPERTENSIONAHA.110.163576
    1. Harrison DG, Marvar PJ, Titze JM (2012) Vascular inflammatory cells in hypertension. Front Physiol 3: 128 10.3389/fphys.2012.00128
    1. Harrison DG, Vinh A, Lob H, Madhur MS (2010) Role of the adaptive immune system in hypertension. Curr Opin Pharmacol 10: 203–207. 10.1016/j.coph.2010.01.006
    1. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological): 289–300.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550.
    1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene Ontology: tool for the unification of biology. Nature genetics 25: 25–29.
    1. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research 28: 27–30.
    1. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, et al. (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26: 2336–2337. 10.1093/bioinformatics/btq419

Source: PubMed

3
Subscribe