Deep exon resequencing of DLGAP2 as a candidate gene of autism spectrum disorders

Wei-Hsien Chien, Susan Shur-Fen Gau, Hsiao-Mei Liao, Yen-Nan Chiu, Yu-Yu Wu, Yu-Shu Huang, Wen-Che Tsai, Ho-Min Tsai, Chia-Hsiang Chen, Wei-Hsien Chien, Susan Shur-Fen Gau, Hsiao-Mei Liao, Yen-Nan Chiu, Yu-Yu Wu, Yu-Shu Huang, Wen-Che Tsai, Ho-Min Tsai, Chia-Hsiang Chen

Abstract

Background: We recently reported a terminal deletion of approximately 2.4 Mb at chromosome 8p23.2-pter in a boy with autism. The deleted region contained the DLGAP2 gene that encodes the neuronal post-synaptic density protein, discs, large (Drosophila) homolog-associated protein 2. The study aimed to investigate whether DLGAP2 is genetically associated with autism spectrum disorders (ASD) in general.

Methods: We re-sequenced all the exons of DLGPA2 in 515 patients with ASD and 596 control subjects from Taiwan. We also conducted bioinformatic analysis and family study of variants identified in this study.

Results: We detected nine common single nucleotide polymorphisms (SNPs) and sixteen novel missense rare variants in this sample. We found that AA homozygotes of rs2906569 (minor allele G, alternate allele A) at intron 1 (P = 0.003) and CC homozygotes of rs2301963 (minor allele A, alternate allele C) at exon 3 (P = 0.0003) were significantly over-represented in the patient group compared to the controls. We also found no differences in the combined frequency of rare missense variants between the two groups. Some of these rare variants were predicted to have an impact on the function of DLGAP2 using informatics analysis, and the family study revealed most of the rare missense mutations in patients were inherited from their unaffected parents.

Conclusions: We detected some common and rare genetic variants of DLGAP2 that might have implication in the pathogenesis of ASD, but they alone may not be sufficient to lead to clinical phenotypes. We suggest that further genetic or environmental factors in affected patients may be present and determine the clinical manifestations.

Trial registration: ClinicalTrial.gov, NCT00494754.

Figures

Figure 1
Figure 1
(A) Schematic genomic structure of the DLGAP2, and locations of the common single nucleotide polymorphisms (SNPs) and rare variants identified in this study. (B) Linkage disequlibrium (LD) analysis of nine common SNPs identified in this study.
Figure 2
Figure 2
(A) Pedigree of S15F mutation, (B) Pedigree of R93S mutation, (C) Pedigree of R182Q mutation. (D) Pedigree of A192S mutation. (E,F) Pedigrees of P281A mutation. (G) Pedigree of R324W mutation. (H) Pedigree of C506R mutation. (I) Pedigree of T712M mutation. (J) Pedigree of E798Q mutation. (K) Pedigree of P917L mutation.

References

    1. Prevalence of autism spectrum disorders - Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. MMWR Surveill Summ. 2012;61(3):1–19.
    1. Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord. 2003;33(4):365–382. doi: 10.1023/A:1025054610557.
    1. Chakrabarti S, Fombonne E. Pervasive developmental disorders in preschool children: confirmation of high prevalence. Am J Psychiatry. 2005;162(6):1133–1141. doi: 10.1176/appi.ajp.162.6.1133.
    1. Veenstra-VanderWeele J, Cook EH Jr. Molecular genetics of autism spectrum disorder. Mol Psychiatry. 2004;9(9):819–832. doi: 10.1038/sj.mp.4001505.
    1. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9(5):341–355. doi: 10.1038/nrg2346.
    1. Bugge M, Bruun-Petersen G, Brondum-Nielsen K, Friedrich U, Hansen J, Jensen G, Jensen PK, Kristoffersson U, Lundsteen C, Niebuhr E. et al.Disease associated balanced chromosome rearrangements: a resource for large scale genotype-phenotype delineation in man. J Med Genet. 2000;37(11):858–865. doi: 10.1136/jmg.37.11.858.
    1. Martin CL, Ledbetter DH. Autism and cytogenetic abnormalities: solving autism one chromosome at a time. Curr Psychiatry Rep. 2007;9(2):141–147. doi: 10.1007/s11920-007-0084-9.
    1. Reddy KS. Cytogenetic abnormalities and fragile-X syndrome in autism spectrum disorder. BMC Med Genet. 2005;6:3.
    1. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry. 2006;11(1):1. doi: 10.1038/sj.mp.4001781. 18–28.
    1. Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S, Badner JA, Matsui S, Conroy J, McQuaid D. et al.Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol Psychiatry. 2008;63(12):1111–1117. doi: 10.1016/j.biopsych.2008.01.009.
    1. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J. et al.Strong association of de novo copy number mutations with autism. Science. 2007;316(5823):445–449. doi: 10.1126/science.1138659.
    1. Jacquemont ML, Sanlaville D, Redon R, Raoul O, Cormier-Daire V, Lyonnet S, Amiel J, Le Merrer M, Heron D, de Blois MC. et al.Array-based comparative genomic hybridization identifies high frequency of cryptic chromosomal rearrangements in patients with syndromic autism spectrum disorders. J Med Genet. 2006;43(11):843–849. doi: 10.1136/jmg.2006.043166.
    1. Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, Gilliam TC, Nowak NJ, Cook EH Jr, Dobyns WB. et al.Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 2008;17(4):628–638.
    1. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T. et al.Association between microdeletion and microduplication at 16p11.2 and autism. N Eng J Med. 2008;358(7):667–675. doi: 10.1056/NEJMoa075974.
    1. Chien S-FG W-H, Wu Y-Y, Huang Y-S, Fang J-S, Chen Y-J, Soong W-T, Chiu Y-N, Chen C-H. Identification and molecular characterization of two novel chromosomal deletions associated with autism. Clin Genet. 2010;78(5):8.
    1. Ranta S, Zhang Y, Ross B, Takkunen E, Hirvasniemi A, de la Chapelle A, Gilliam TC, Lehesjoki AE. Positional cloning and characterization of the human DLGAP2 gene and its exclusion in progressive epilepsy with mental retardation. European journal of human genetics: EJHG. 2000;8(5):381–384. doi: 10.1038/sj.ejhg.5200440.
    1. Kristiansen LV, Meador-Woodruff JH. Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res. 2005;78(1):87–93. doi: 10.1016/j.schres.2005.06.012.
    1. de Bartolomeis A, Fiore G. Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies. Int Rev Neurobiol. 2004;59:221–254.
    1. Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of AMPA receptor trafficking and signaling molecule transcripts in the prefrontal cortex in schizophrenia. Synapse. 2006;60(8):585–598. doi: 10.1002/syn.20329.
    1. Boeckers TM. The postsynaptic density. Cell Tissue Res. 2006;326(2):409–422. doi: 10.1007/s00441-006-0274-5.
    1. Wu K, Hanna GL, Easter P, Kennedy JL, Rosenberg DR, Arnold PD. Glutamate system genes and brain volume alterations in pediatric obsessive-compulsive disorder: a preliminary study. Psychiatry Res. 2013;211(3):214–220. doi: 10.1016/j.pscychresns.2012.07.003.
    1. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y. et al.Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–488. doi: 10.1016/j.ajhg.2007.12.009.
    1. Ozgen HM, van Daalen E, Bolton PF, Maloney VK, Huang S, Cresswell L, van den Boogaard MJ, Eleveld MJ, Van't Slot R, Hochstenbach R. et al.Copy number changes of the microcephalin 1 gene (MCPH1) in patients with autism spectrum disorders. Clin Genet. 2009;76(4):348–356. doi: 10.1111/j.1399-0004.2009.01254.x.
    1. Gau SS, Liu LT, Wu YY, Chiu YN, Tsai WC. Psychometric properties of the Chinese version of the social responsiveness scale. Res Autism Spectr Disord. 2013;7(2):349–360. doi: 10.1016/j.rasd.2012.10.004.
    1. Gau SS-F, Lee C-M, Lai M-C, Chiu Y-N, Huang Y-F, Kao J-D, Wu Y-Y. Psychometric properties of the Chinese version of the social communication questionnaire. Res Autism Spectr Disord. 2011;5(2):809–818. doi: 10.1016/j.rasd.2010.09.010.
    1. den Dunnen JT, Antonarakis SE. Nomenclature for the description of human sequence variations. Hum Genet. 2001;109(1):121–124. doi: 10.1007/s004390100505.
    1. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–98. doi: 10.1038/sj.cr.7290272.
    1. Storey JD, Tibshirani R. Statistical significance for genome-wide studies. Proc Natl Acad Sci USA. 2003;100(16):9440–9445. doi: 10.1073/pnas.1530509100.
    1. Lau WY, Gau SS, Chiu YN, Wu YY, Chou WJ, Liu SK, Chou MC. Psychometric properties of the Chinese version of the Autism Spectrum Quotient (AQ) Res Dev Disabil. 2013;34(1):294–305. doi: 10.1016/j.ridd.2012.08.005.
    1. Devlin B, Melhem N, Roeder K. Do common variants play a role in risk for autism? Evidence and theoretical musings. Brain Res. 2011;1380:78–84.
    1. Gau SS, Lee CM, Lai MC, Chiu YN, Huang YF, Kao JD, Wu YY. Psychometric properties of the Chinese version of the Social Communication Questionnaire. Research in Autism Spectrum Disorders. 2011;5(2):809–818. doi: 10.1016/j.rasd.2010.09.010.
    1. Anney R, Klei L, Pinto D, Almeida J, Bacchelli E, Baird G, Bolshakova N, Bolte S, Bolton PF, Bourgeron T. et al.Individual common variants exert weak effects on the risk for autism spectrum disorders. Hum Mol Genet. 2012;21(21):4781–4792. doi: 10.1093/hmg/dds301.
    1. Goldstein DB, Cavalleri GL, Ahmadi KR. The genetics of common diseases: 10 million times as hard. Cold Spring Harb Symp Quant Biol. 2003;68:395–401. doi: 10.1101/sqb.2003.68.395.
    1. Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP, Curran S, Ogilvie C, Ahn JW, Drmic I, Senman L. et al.Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet. 2012;90(1):133–141. doi: 10.1016/j.ajhg.2011.11.025.
    1. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, Karakoc E, Mackenzie AP, Ng SB, Baker C. et al.Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43(6):585–589. doi: 10.1038/ng.835.
    1. Bremer A, Giacobini M, Eriksson M, Gustavsson P, Nordin V, Fernell E, Gillberg C, Nordgren A, Uppstromer A, Anderlid BM. et al.Copy number variation characteristics in subpopulations of patients with autism spectrum disorders. Am J Med Genet B. 2011;156(2):115–124. doi: 10.1002/ajmg.b.31142.
    1. Kumar RA. Two-hit wonder: a novel genetic model to explain variable expressivity in severe pediatric phenotypes. Clin Genet. 2010;78(6):517–519. doi: 10.1111/j.1399-0004.2010.01530_1.x.
    1. Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, Vives L, Walsh T, McCarthy SE, Baker C. et al.A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet. 2010;42(3):203–209. doi: 10.1038/ng.534.
    1. Schaaf CP, Sabo A, Sakai Y, Crosby J, Muzny D, Hawes A, Lewis L, Akbar H, Varghese R, Boerwinkle E. et al.Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum Mol Genet. 2011;20(17):3366–3375. doi: 10.1093/hmg/ddr243.
    1. Chien WH, Gau SS, Wu YY, Huang YS, Fang JS, Chen YJ, Soong WT, Chiu YN, Chen CH. Identification and molecular characterization of two novel chromosomal deletions associated with autism. Clin Genet. 2010;78(5):449–456. doi: 10.1111/j.1399-0004.2010.01395.x.
    1. Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V. et al.Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242–245. doi: 10.1038/nature11011.

Source: PubMed

3
Subscribe