The effects of nalmefene on the impulsive and reflective system in alcohol use disorder: A resting-state fMRI study

Nadja Grundinger, Sarah Gerhardt, Damian Karl, Karl Mann, Falk Kiefer, Sabine Vollstädt-Klein, Nadja Grundinger, Sarah Gerhardt, Damian Karl, Karl Mann, Falk Kiefer, Sabine Vollstädt-Klein

Abstract

Rationale: Central aspects of alcohol use disorder (AUD) are the irresistible desire for alcohol and impaired control over its intake. According to the triadic neurocognitive model of addiction, this arises from aberrant functioning of different neural and cognitive systems: an impulsive system, a reflective system, and the abnormal dynamics between both systems based on an insular-dependent system.

Objectives: In this study, we examined the effects of a single dose of nalmefene on resting-state functional connectivity (rsFC) patterns within and between these addiction-related neural systems in AUD.

Methods: Non-treatment seeking participants with AUD (N = 17; 19-66 years, 6 female) took part in a randomized, placebo-controlled, double-blind, crossover study and received either a single dose of 18 mg nalmefene or a placebo. Using seed-based correlation analyses on resting-state functional magnetic resonance imaging data, we examined the effects of nalmefene on key nodes related to the (1) impulsive system; (2) reflective system; (3) salience network; and (4) default mode network.

Results: Under nalmefene, participants showed reduced rsFC between components of the impulsive system (Nucleus accumbens-putamen/pallidum/insula). Reduced rsFC was found between elements of the reflective system and impulsive system (orbitofrontal cortex-insula/putamen/pallidum), salience network (orbitofrontal cortex-insula/inferior frontal gyrus), and default mode network (lateral prefrontal cortex-precuneus/cuneus). Components of the salience network showed both increased (anterior cingulate cortex) and decreased (insular cortex) rsFC to elements of the reflective system.

Conclusion: A single dose of nalmefene impacts rsFC and alters the interaction between key nodes of addiction-related neural systems in non-treatment seeking participants with AUD. Nalmefene may normalize rsFC patterns by weakening the impulsive system while strengthening the reflective system.

Trial registration: clinicaltrials.gov: NCT02372318.

Keywords: Alcohol use disorder; Impulsive system; Nalmefene; Pharmacotherapy; Reduced drinking; Reflective system; Resting-state functional connectivity; Salience network.

Conflict of interest statement

Outside the submitted work, Falk Kiefer received honoraria as a consultant for Amomed, Desitin, Indivior, Lundbeck, and Otsuka. We do not have further commercial or financial involvements that might present an appearance of a conflict of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Detailed overview of study design and procedure. During fMRI measurement, participants worked on a cue-reactivity task for alcohol-associated stimuli (Karl et al. 2021) and an emotional faces processing task (Vollstädt-Klein et al. 2019)
Fig. 2
Fig. 2
Schematic display of examined neural systems with corresponding nodes. Impulsive System (violet): Nucleus accumbens left (− 9.5, 12, − 7), Nucleus accumbens right (9, 12, − 7); Reflective System (green): lateral prefrontal cortex left (− 43, 33, 28), lateral prefrontal cortex right (41, 38 30), orbitofrontal cortex left (− 30, 24, − 17), orbitofrontal cortex right (29, 23, − 16); Salience Network (yellow): anterior cingulate Cortex (0, 22, 35), insular cortex left (− 36, 1, 0), insular cortex right (37, 3, 0): Default Mode Network (blue): medial prefrontal cortex (1, 55, − 3); posterior cingulate cortex (1, − 61, 38)
Fig. 3
Fig. 3
Enrollment process
Fig. 4
Fig. 4
Effects of 18 mg nalmefene on the functional connectivity in key nodes of the neural systems. a Overview of the effects of nalmefene on resting-state functional connectivity (rsFC). Increased (red arrow) and decreased (blue arrow) functional connectivity between key nodes of the impulsive system (purple); reflective system (green); salience network (yellow); default mode network (gray). b Schematic representation explained from left to right: Increased rsFC between elements of the reflective system and ACC, which enhances inhibitory control. The ACC is responsible for conflict monitoring and error detection and reports to the dlPFC how much cognitive control is required. Reduced rsFC between the left insula and parts of the reflective system (insula–dlPFC; OFC–insula). This may prevent the embodied drug states represented in the insula from overpowering and hijacking the cognitive control system. Reduced coupling between the mPFC and the insula-IFG-network to strengthen inhibitory control. Reduced rsFC between right Nacc and the insula to reduce craving and may prevent the representation of interoceptive drug body states from affecting the Nacc, which could lead to drug-seeking behavior. Reduced rsFC within the striatum. By downregulating the impulsive system and possibly thereby normalizing the hypersensitized reward system, attentional bias and craving may be reduced. Decreased rsFC between OFC and Nacc to prevent the OFC from influencing the Nacc by presenting a high drug value or an incentive representation (wanting), which in turn can lead to a salience value of alcohol-related stimuli and promote approaching behavior. Increased rsFC between OFC and precuneus, which strengthens positive emotionality. Decreased rsFC between OFC and IFG, whose coupling is associated with anxiety. Reduced rsFC between right lPFC and precuneus, whose extended and excessive connectivity in AUD is associated with lack of inhibitory control and craving
Fig. 5
Fig. 5
Changes in resting-state functional connectivity between placebo and nalmefene. t-values from the significant clusters (local maximum) reported in the results (FC placebo vs. nalmefene). MNI, Montreal Neurological Institute
Fig. 6
Fig. 6
Impulsive system: brain regions with decreased resting-state functional connectivity between the seed region “right nucleus accumbens” and the rest of the brain after 18 mg nalmefene compared to placebo (contrast: nalmefene > placebo, MNI coordinates: − 20 00 14). Combined voxel-wise-threshold (p < .01) and cluster-extent threshold k > 460 Voxel, corresponding to pFDR < .05
Fig. 7
Fig. 7
Reflective system: brain regions with decreased and increased resting-state functional connectivity between the seed region “left orbitofrontal cortex” and the rest of the brain after 18 mg nalmefene compared to placebo (contrast: nalmefene > placebo, MNI coordinates a − 50 06 20, MNI coordinates b 18 − 64 20). Combined voxel-wise-threshold (p < .01) and cluster-extent threshold k > 442 Voxel, corresponding to pFDR < .05
Fig. 8
Fig. 8
Salience network: brain regions with decreased resting-state functional connectivity between the seed region “left insular cortex” and the rest of the brain after 18 mg nalmefene compared to placebo (contrast: nalmefene > placebo, MNI coordinates: − 12 50 00). Combined voxel-wise-threshold (p < .01) and cluster-extent threshold k > 388 Voxel, corresponding to pFDR < .05
Fig. 9
Fig. 9
Salience network: brain regions with increased resting-state functional connectivity between the seed region “anterior cingulate cortex” and the rest of the brain after 18 mg nalmefene compared to placebo (contrast nalmefene > placebo, MNI coordinates: 42 − 56 20). Combined voxel-wise-threshold (p < .01) and cluster-extent threshold k > 372 Voxel, corresponding to pFDR < .05
Fig. 10
Fig. 10
Default mode network: brain regions with decreased resting-state functional connectivity between the seed region “medial prefrontal cortex” and the rest of the brain after 18 mg nalmefene compared to placebo (contrast: nalmefene > placebo, MNI coordinates: 50 00 10). Combined voxel-wise-threshold (p < .01) and cluster-extent threshold k > 369 Voxel, corresponding to pFDR < .05

References

    1. Agcaoglu O, Miller R, Mayer AR, Hugdahl K, Calhoun VD. Lateralization of resting state networks and relationship to age and gender. Neuroimage. 2015;104:310–325. doi: 10.1016/j.neuroimage.2014.09.001.
    1. American Psychiatric Association . Diagnostic and statistical manual of mental disorders: DSM-5. 5. Washington, DC: American Psychiatric Publishing; 2013.
    1. Andersson JL, Hutton C, Ashburner J, Turner R, Friston KJ. Modeling geometric deformations in EPI time series. Neuroimage. 2001;13(5):903–919. doi: 10.1006/nimg.2001.0746.
    1. Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci. 2014;1316:29–52. doi: 10.1111/nyas.12360.
    1. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839–851. doi: 10.1016/j.neuroimage.2005.02.018.
    1. Bart G, Schluger JH, Borg L, Ho A, Bidlack JM, Kreek MJ. Nalmefene induced elevation in serum prolactin in normal human volunteers: partial kappa opioid agonist activity? Neuropsychopharmacology. 2005;30(12):2254–2262. doi: 10.1038/sj.npp.1300811.
    1. Berridge KC, Kringelbach ML. Neuroscience of affect: brain mechanisms of pleasure and displeasure. Curr Opin Neurobiol. 2013;23(3):294–303. doi: 10.1016/j.conb.2013.01.017.
    1. Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–541. doi: 10.1002/mrm.1910340409.
    1. Boettiger CA, Kelley EA, Mitchell JM, D'Esposito M, Fields HL. Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network. Pharmacol Biochem Behav. 2009;93(3):291–299. doi: 10.1016/j.pbb.2009.02.008.
    1. Bohn MJ, Babor TF, Kranzler HR. The Alcohol use disorders identification test (AUDIT): validation of a screening instrument for use in medical settings. J Stud Alcohol. 1995;56(4):423–432. doi: 10.15288/jsa.1995.56.423.
    1. Camchong J, Stenger A, Fein G. Resting-state synchrony during early alcohol abstinence can predict subsequent relapse. Cerebral cortex New York N Y 1991. 2013;23(9):2086–2099. doi: 10.1093/cercor/bhs190.
    1. Camchong J, Stenger VA, Fein G. Resting-state synchrony in short-term versus long-term abstinent alcoholics. Alcoholism Clin Exp res. 2013;37(5):794–803. doi: 10.1111/acer.12037.
    1. Carter CS, Braver TS, Barch DM, Botvinick M, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Sci New York N Y. 1998;280(5364):747–749. doi: 10.1126/science.280.5364.747.
    1. Cauda F, Cavanna AE, D'agata F, Sacco K, Duca S, Geminiani GC. Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci. 2011;23(10):2864–2877. doi: 10.1162/jocn.2011.21624.
    1. Chai XJ, Castañón AN, Ongür D, Whitfield-Gabrieli S. Anticorrelations in resting state networks without global signal regression. Neuroimage. 2012;59(2):1420–1428. doi: 10.1016/j.neuroimage.2011.08.048.
    1. Chanraud S, Pitel A-L, Pfefferbaum A, Sullivan EV. Disruption of functional connectivity of the default-mode network in alcoholism. Cerebral cortex New York N Y 1991. 2011;21(10):2272–2281. doi: 10.1093/cercor/bhq297.
    1. Ciccocioppo R. Effect of selective blockade of μ1 or δ opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats. Neuropsychopharmacol. 2002;27(3):391–399. doi: 10.1016/S0893-133X(02)00302-0.
    1. Courtney KE, Ghahremani DG, London ED, Ray LA. The association between cue-reactivity in the precuneus and level of dependence on nicotine and alcohol. Drug Alcohol Depend. 2014;141:21–26. doi: 10.1016/j.drugalcdep.2014.04.026.
    1. Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiat. 2005;58(10):787–795. doi: 10.1016/j.biopsych.2005.04.037.
    1. Dawson DA, Goldstein RB, Grant BF. Differences in the profiles of DSM-IV and DSM-5 alcohol use disorders: implications for clinicians. Alcoholism Clin Exp Res. 2013;37(Suppl 1):E305–13. doi: 10.1111/j.1530-0277.2012.01930.x.
    1. Devine DP, Leone P, Pocock D, Wise RA. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies. J Pharmacol Exp Ther. 1993;266(3):1236–1246.
    1. Farré-Colomés À Gerhardt S Luderer M Sobanski E Kiefer F Vollstädt-Klein S (2021) Common and distinct neural connectivity in attention-deficit/hyperactivity disorder and alcohol use disorder studied using resting-state functional magnetic resonance imaging. Alcoholism: clinical and experimental research. 10.1111/acer.14593
    1. Fede SJ, Grodin EN, Dean SF, Diazgranados N, Momenan R. Resting state connectivity best predicts alcohol use severity in moderate to heavy alcohol users. NeuroImage Clinical. 2019;22:101782. doi: 10.1016/j.nicl.2019.101782.
    1. Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA. The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp. 2013;34(6):1330–1343. doi: 10.1002/hbm.21514.
    1. Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RS, Dolan RJ. The mind’s eye–precuneus activation in memory-related imagery. Neuroimage. 1995;2(3):195–200. doi: 10.1006/nimg.1995.1025.
    1. Fox MD, Snyder AZ, Vincent JL, Corbetta M, van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–9678. doi: 10.1073/pnas.0504136102.
    1. Fox MD Greicius M (2010) Clinical applications of resting state functional connectivity. frontiers in systems neuroscience 4. 10.3389/fnsys.2010.00019
    1. Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. 1994;2(1–2):56–78. doi: 10.1002/hbm.460020107.
    1. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35(3):346–355. doi: 10.1002/mrm.1910350312.
    1. Gold AL, Morey RA, McCarthy G. Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction. Biol Psychiat. 2015;77(4):394–403. doi: 10.1016/j.biopsych.2014.03.030.
    1. Gordon HW. Laterality of brain activation for risk factors of addiction. Curr Drug Abuse Rev. 2016;9(1):1–18. doi: 10.2174/1874473709666151217121309.
    1. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100(1):253–258. doi: 10.1073/pnas.0135058100.
    1. Grodin EN, Sussman L, Sundby K, Brennan GM, Diazgranados N, Heilig M, Momenan R. Neural correlates of compulsive alcohol seeking in heavy drinkers. Biol Psychiatr Cogn Neurosci Neuroimaging. 2018;3(12):1022–1031. doi: 10.1016/j.bpsc.2018.06.009.
    1. Halcomb ME, Chumin EJ, Goñi J, Dzemidzic M, Yoder KK. Aberrations of anterior insular cortex functional connectivity in nontreatment-seeking alcoholics. Psychiatr Res Neuroimaging. 2019;284:21–28. doi: 10.1016/j.pscychresns.2018.12.016.
    1. Hallquist MN, Hwang K, Luna B. The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage. 2013;82:208–225. doi: 10.1016/j.neuroimage.2013.05.116.
    1. Hasin DS, Grant BF. The national epidemiologic survey on alcohol and related conditions (NESARC) waves 1 and 2: review and summary of findings. Soc Psychiatry Psychiatr Epidemiol. 2015;50(11):1609–1640. doi: 10.1007/s00127-015-1088-0.
    1. Heatherton TF, Kozlowski LT, Frecker RC, Fagerström KO. The Fagerström test for nicotine dependence: a revision of the Fagerström tolerance questionnaire. Br J Addict. 1991;86(9):1119–1127. doi: 10.1111/j.1360-0443.1991.tb01879.x.
    1. Henson R, Büchel O, Josephs O, Friston KJ. The slice-timing problem in event-related fMRI. NeuroImage. 1999;9:125.
    1. Henssler J, Müller M, Carreira H, Bschor T, Heinz A, Baethge C. Controlled drinking-non-abstinent versus abstinent treatment goals in alcohol use disorder: a systematic review, meta-analysis and meta-regression. Addiction Abingdon England. 2021;116(8):1973–1987. doi: 10.1111/add.15329.
    1. Holloway ZR, Paige NB, Comstock JF, Nolen HG, Sable HJ, Lester DB. Cerebellar modulation of mesolimbic dopamine transmission is functionally asymmetrical. cerebellum. 2019;18(5):922–931. doi: 10.1007/s12311-019-01074-w.
    1. Ieong HF Yuan Z (2017) Abnormal resting-state functional connectivity in the orbitofrontal cortex of heroin users and its relationship with anxiety: a pilot fNIRS study. Scientific Reports 7. 10.1038/srep46522
    1. Karl D Bumb JM Bach P Dinter C Koopmann A Hermann D Mann K Kiefer F Vollstädt-Klein S (2021) Nalmefene attenuates neural alcohol cue-reactivity in the ventral striatum and subjective alcohol craving in patients with alcohol use disorder. Psychopharmacology. 10.1007/s00213-021-05842-7
    1. Kjaer TW, Nowak M, Kjaer KW, Lou AR, Lou HC. Precuneus-prefrontal activity during awareness of visual verbal stimuli. Conscious Cogn. 2001;10(3):356–365. doi: 10.1006/ccog.2001.0509.
    1. Kohno M, Dennis LE, McCready H, Hoffman WF. Executive control and striatal resting-state network interact with risk factors to influence treatment outcomes in alcohol-use disorder. Front Psychiatry. 2017;8:182. doi: 10.3389/fpsyt.2017.00182.
    1. Kohno M, Morales AM, Dennis LE, McCready H, Hoffman WF, Korthuis PT. Effects of naltrexone on large-scale network interactions in methamphetamine use disorder front. Psychiatry. 2019;10:603. doi: 10.3389/fpsyt.2019.00603.
    1. Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56(Suppl 1):18–31. doi: 10.1016/j.neuropharm.2008.07.043.
    1. Koob GF, Volkow ND. Neurocircuitry of addiction Neuropsychopharmacology. off publ Am Coll Neuropsychopharmacol. 2010;35(1):217–238. doi: 10.1038/npp.2009.110.
    1. Kraus L, Pabst A, Piontek D, Gmel G, Shield KD, Frick H, Rehm JT. Temporal changes in alcohol-related morbidity and mortality in Germany. Eur Addict Res. 2015;21(5):262–272. doi: 10.1159/000381672.
    1. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6(9):691–702. doi: 10.1038/nrn1747.
    1. Kyhl L-EB, Li S, Faerch KU, Soegaard B, Larsen F, Areberg J. Population pharmacokinetics of nalmefene in healthy subjects and its relation to μ-opioid receptor occupancy. Br J Clin Pharmacol. 2016;81(2):290–300. doi: 10.1111/bcp.12805.
    1. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):12–32. doi: 10.1093/brain/awt162.
    1. Li Y Qin W Jiang T Zhang Y Yu C (2012) Sex-dependent correlations between the personality dimension of harm avoidance and the resting-state functional connectivity of amygdala subregions. PloS one 7(4). 10.1371/journal.pone.0035925
    1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FGR, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CDH, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford HA, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJL, Ezzati M. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2224–2260. doi: 10.1016/S0140-6736(12)61766-8.
    1. Lim AC, Cservenka A, Ray LA. Effects of alcohol dependence severity on neural correlates of delay discounting. Alcohol Alcoholism Oxford Oxfordshire. 2017;52(4):506–515. doi: 10.1093/alcalc/agx015.
    1. Lindholm S, Rosin A, Dahlin I, Georgieva J, Franck J. Ethanol alters the effect of kappa receptor ligands on dopamine release in the nucleus accumbens. Physiol Behav. 2007;92(1–2):167–171. doi: 10.1016/j.physbeh.2007.05.039.
    1. Lv H, Wang Z, Tong E, Williams LM, Zaharchuk G, Zeineh M, Goldstein-Piekarski AN, Ball TM, Liao C, Wintermark M. Resting-state functional MRI: everything that nonexperts have always wanted to know. Am J Neuroradiol. 2018;39(8):1390–1399. doi: 10.3174/ajnr.A5527.
    1. Ma N, Liu Y, Li N, Wang C-X, Zhang H, Jiang X-F, Xu H-S, Fu X-M, Hu X, Zhang D-R. Addiction related alteration in resting-state brain connectivity. Neuroimage. 2010;49(1):738–744. doi: 10.1016/j.neuroimage.2009.08.037.
    1. Mann K, Aubin H-J, Witkiewitz K. Reduced drinking in alcohol dependence treatment, what is the evidence? Eur Addict Res. 2017;23(5):219–230. doi: 10.1159/000481348.
    1. Menon V, Adleman NE, White CD, Glover GH, Reiss AL. Error-related brain activation during a Go/NoGo response inhibition task. Hum Brain Mapp. 2001;12(3):131–143. doi: 10.1002/1097-0193(200103)12:3<131:aid-hbm1010>;2-c.
    1. Müller-Oehring EM, Jung Y-C, Pfefferbaum A, Sullivan EV, Schulte T. The resting brain of alcoholics. Cereb Cortex. 2015;25(11):4155–4168. doi: 10.1093/cercor/bhu134.
    1. Myrick H, Anton RF, Li X, Henderson S, Drobes D, Voronin K, George MS. Differential brain activity in alcoholics and social drinkers to alcohol cues: relationship to craving Neuropsychopharmacology. Off Publ Am Coll Neuropsychopharmacol. 2004;29(2):393–402. doi: 10.1038/sj.npp.1300295.
    1. Myrick H, Anton RF, Li X, Henderson S, Randall PK, Voronin K. Effect of naltrexone and ondansetron on alcohol cue-induced activation of the ventral striatum in alcohol-dependent people. Arch Gen Psychiatry. 2008;65(4):466–475. doi: 10.1001/archpsyc.65.4.466.
    1. Naqvi NH, Bechara A. The hidden island of addiction: the insula. Trends Neurosci. 2009;32(1):56–67. doi: 10.1016/j.tins.2008.09.009.
    1. Naqvi NH, Gaznick N, Tranel D, Bechara A. The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Ann N Y Acad Sci. 2014;1316:53–70. doi: 10.1111/nyas.12415.
    1. Nestler EJ. Is there a common molecular pathway for addiction? Nat Neurosci. 2005;8(11):1445–1449. doi: 10.1038/nn1578.
    1. Nielsen JA, Zielinski BA, Ferguson MA, Lainhart JE, Anderson JS. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging. Plos One. 2013;8(8):e71275. doi: 10.1371/journal.pone.0071275.
    1. Noël X, Brevers D, Bechara A. A triadic neurocognitive approach to addiction for clinical interventions. Front Psychiatry. 2013;4:179. doi: 10.3389/fpsyt.2013.00179.
    1. Oberlin BG, Dzemidzic M, Tran SM, Soeurt CM, O'Connor SJ, Yoder KK, Kareken DA. Beer self-administration provokes lateralized nucleus accumbens dopamine release in male heavy drinkers. Psychopharmacology. 2015;232(5):861–870. doi: 10.1007/s00213-014-3720-1.
    1. Oberlin BG, Dzemidzic M, Harezlak J, Kudela MA, Tran SM, Soeurt CM, Yoder KK, Kareken DA. Corticostriatal and dopaminergic response to beer flavor with both fMRI and (11) craclopride positron emission tomography. Alcoholism Clin Exp Res. 2016;40(9):1865–1873. doi: 10.1111/acer.13158.
    1. Pariyadath V, Gowin JL, Stein EA. Resting state functional connectivity analysis for addiction medicine: from individual loci to complex networks. Prog Brain Res. 2016;224:155–173. doi: 10.1016/bs.pbr.2015.07.015.
    1. Park M-S, Sohn J-H, Suk J-A, Kim S-H, Sohn S, Sparacio R. Brain substrates of craving to alcohol cues in subjects with alcohol use disorder. Alcohol and Alcoholism Oxford Oxfordshire. 2007;42(5):417–422. doi: 10.1093/alcalc/agl117.
    1. Peng J, Sarkar S, Chang SL. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012;124(3):223–228. doi: 10.1016/j.drugalcdep.2012.01.013.
    1. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–341. doi: 10.1016/j.neuroimage.2013.08.048.
    1. Quelch DR, Mick I, McGonigle J, Ramos AC, Flechais RSA, Bolstridge M, Rabiner E, Wall MB, Newbould RD, Steiniger-Brach B, van den Berg F, Boyce M, Østergaard Nilausen D, Breuning Sluth L, Meulien D, von der Goltz C, Nutt DJ, Lingford-Hughes AR. Nalmefene reduces reward anticipation in alcohol dependence: an experimental functional magnetic resonance imaging study. Biol Psychiat. 2017;81(11):941–948. doi: 10.1016/j.biopsych.2016.12.029.
    1. Rehm J, Allamani A, Elekes Z, Jakubczyk A, Manthey J, Probst C, Struzzo P, Della Vedova R, Gual A, Wojnar M. Alcohol dependence and treatment utilization in Europe - a representative cross-sectional study in primary care. Bmc Fam Pract. 2015;16:90. doi: 10.1186/s12875-015-0308-8.
    1. Ridderinkhof KR, van den Wildenberg WPM, Segalowitz SJ, Carter CS. Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 2004;56(2):129–140. doi: 10.1016/j.bandc.2004.09.016.
    1. SAMHSA (2014) Results from the 2013 National survey on drug use and health: summary of national findings. National Survey on Drug Use and Health (NSDUH), Rockville, MD
    1. Schacht JP, Anton RF, Myrick H. Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol. 2013;18(1):121–133. doi: 10.1111/j.1369-1600.2012.00464.x.
    1. Schacht JP, Randall PK, Latham PK, Voronin KE, Book SW, Myrick H, Anton RF. Predictors of naltrexone response in a randomized trial: reward-related brain activation, OPRM1 genotype, and smoking status. Neuropsychopharmacol. 2017;42(13):2640–2653. doi: 10.1038/npp.2017.74.
    1. Scheurich A, Müller MJ, Anghelescu I, Lörch B, Dreher M, Hautzinger M, Szegedi A. Reliability and validity of the form 90 interview. Eur Addict Res. 2005;11(1):50–56. doi: 10.1159/000081417.
    1. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci Off J Soc Neurosci. 2007;27(9):2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.
    1. Seif T, Chang S-J, Simms JA, Gibb SL, Dadgar J, Chen BT, Harvey BK, Ron D, Messing RO, Bonci A, Hopf FW. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake. Nat Neurosci. 2013;16(8):1094–1100. doi: 10.1038/nn.3445.
    1. Shield K, Manthey J, Rylett M, Probst C, Wettlaufer A, Parry CDH, Rehm J. National, regional, and global burdens of disease from 2000 to 2016 attributable to alcohol use: a comparative risk assessment study. The Lancet Public Health. 2020;5(1):e51–e61. doi: 10.1016/S2468-2667(19)30231-2.
    1. Shokri-Kojori E, Wang G-J, Volkow ND. Naloxone precipitated withdrawal increases dopamine release in the dorsal striatum of opioid dependent men. Transl Psychiatry. 2021;11(1):445. doi: 10.1038/s41398-021-01548-8.
    1. Sirohi S, Bakalkin G, Walker BM. Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci. 2012;5:95. doi: 10.3389/fnmol.2012.00095.
    1. Skinner HA, Allen BA. Alcohol dependence syndrome: measurement and validation. J Abnorm Psychol. 1982;91(3):199–209. doi: 10.1037/0021-843X.91.3.199.
    1. Sutherland MT, McHugh MJ, Pariyadath V, Stein EA. Resting state functional connectivity in addiction: lessons learned and a road ahead. Neuroimage. 2012;62(4):2281–2295. doi: 10.1016/j.neuroimage.2012.01.117.
    1. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2010;20(8):519–534. doi: 10.1016/j.euroneuro.2010.03.008.
    1. Vergara VM, Liu J, Claus ED, Hutchison K, Calhoun V. Alterations of resting state functional network connectivity in the brain of nicotine and alcohol users. Neuroimage. 2017;151:45–54. doi: 10.1016/j.neuroimage.2016.11.012.
    1. Volkow ND, Wang G-J, Telang F, Fowler JS, Logan J, Jayne M, Ma Y, Pradhan K, Wong C. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci Off J Soc Neurosci. 2007;27(46):12700–12706. doi: 10.1523/JNEUROSCI.3371-07.2007.
    1. Volkow ND, Tomasi D, Wang G-J, Fowler JS, Telang F, Goldstein RZ, Alia-Klein N, Woicik P, Wong C, Logan J, Millard J, Alexoff D. Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Mol Psychiatry. 2011;16(8):818–825. doi: 10.1038/mp.2011.30.
    1. Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016;374(4):363–371. doi: 10.1056/NEJMra1511480.
    1. Vollstädt-Klein S, Bumb JM, Otto A, Dinter C, Karl D, Koopmann A, Hermann D, Mann K, Kiefer F. The effects of nalmefene on emotion processing in alcohol use disorder - a randomized, controlled fMRI study. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2019;29(12):1442–1452. doi: 10.1016/j.euroneuro.2019.10.014.
    1. Walker BM, Valdez GR, McLaughlin JP, Bakalkin G. Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol Fayetteville N Y. 2012;46(4):359–370. doi: 10.1016/j.alcohol.2011.10.006.
    1. Wallis JD. Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci. 2007;30:31–56. doi: 10.1146/annurev.neuro.30.051606.094334.
    1. Wang J, Fan Y, Dong Y, Ma M, Dong Y, Niu Y, Jiang Y, Wang H, Wang Z, Wu L, Sun H, Cui C. Combining gray matter volume in the cuneus and the cuneus-prefrontal connectivity may predict early relapse in abstinent alcohol-dependent patients. Plos One. 2018;13(5):e0196860. doi: 10.1371/journal.pone.0196860.
    1. Weiland BJ, Sabbineni A, Calhoun VD, Welsh RC, Bryan AD, Jung RE, Mayer AR, Hutchison KE. Reduced left executive control network functional connectivity is associated with alcohol use disorders. Alcohol Clin Exp Res. 2014;38(9):2445–2453. doi: 10.1111/acer.12505.
    1. Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD. Cognitive and default-mode resting state networks: do male and female brains “rest” differently? Hum Brain Mapp. 2010;31(11):1713–1726. doi: 10.1002/hbm.20968.
    1. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073.
    1. Wilcox CE, Abbott CC, Calhoun VD. Alterations in resting-state functional connectivity in substance use disorders and treatment implications. Prog Neuropsychopharmacol Biol Psychiatry. 2019;91:79–93. doi: 10.1016/j.pnpbp.2018.06.011.
    1. Wills TA, Sandy JM, Yaeger A, Shinar O. Family risk factors and adolescent substance use: moderation effects for temperament dimensions. Dev Psychol. 2001;37(3):283–297. doi: 10.1037/0012-1649.37.3.283.
    1. Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction. Neuroimage. 2019;200:313–331. doi: 10.1016/j.neuroimage.2019.06.036.
    1. Zhang S, Hu S, Chao HH, Li CR. Hemispheric lateralization of resting-state functional connectivity of the ventral striatum: an exploratory study. Brain Struct Funct. 2017;222(6):2573–2583. doi: 10.1007/s00429-016-1358-y.
    1. Zhu X, Cortes CR, Mathur K, Tomasi D, Momenan R. Model-free functional connectivity and impulsivity correlates of alcohol dependence: a resting-state study. Addict Biol. 2017;22(1):206–217. doi: 10.1111/adb.12272.

Source: PubMed

3
Subscribe